template<class vec_t = boost::numeric::ublas::vector<double>, class mat_t = boost::numeric::ublas::vector<double>, class mat_row_t = boost::numeric::ublas::matrix_row <boost::numeric::ublas::vector<double> >>
class o2scl::interpm_krige_optim< vec_t, mat_t, mat_row_t >
See also the Interpolation section of the O2scl User's guide.
- Note
- This class is experimental.
Definition at line 392 of file interpm_krige.h.
|
void | set_len_range (double min2, double max2) |
| Set the range for the length parameter.
|
|
template<class mat2_row_t , class mat2_t , class vec2_t , class vec3_t > |
int | set_data_noise (size_t n_in, size_t n_out, size_t n_points, mat_t &user_x, mat2_t &user_y, const vec2_t &noise_var, const vec3_t &len_precompute, bool rescale=false, bool err_on_fail=true) |
| Initialize interpolation routine.
|
|
template<class mat2_row_t , class mat2_t , class vec2_t > |
int | set_data (size_t n_in, size_t n_out, size_t n_points, mat_t &user_x, mat2_t &user_y, const vec2_t &len_precompute, bool rescale=false, bool err_on_fail=true) |
| Initialize the data for the interpolation. More...
|
|
int | set_data_noise (size_t n_in, size_t n_out, size_t n_points, boost::numeric::ublas::vector< double > &user_x, mat2_t &user_y, func_vec_t &fcovar, const boost::numeric::ublas::vector< double > &noise_var, bool rescale=false, bool err_on_fail=true) |
| Initialize the data for the interpolation. More...
|
|
int | set_data (size_t n_in, size_t n_out, size_t n_points, boost::numeric::ublas::vector< double > &user_x, mat2_t &user_y, func_vec_t &fcovar, bool rescale=false, bool err_on_fail=true) |
| Initialize the data for the interpolation. More...
|
|
void | eval (const vec2_t &x0, vec3_t &y0, vec_func_t &fcovar) |
| Given covariance function fcovar and input vector x store the result of the interpolation in y .
|
|
|
std::vector< std::function< double(const mat_row_t &, const mat_row_t &)> > | ff1 |
| Function objects for the covariance.
|
|
std::vector< double > | len |
| The covariance function length scale for each output function.
|
|
std::vector< double > | qual |
| The quality factor of the optimization for each output function.
|
|
bool | len_guess_set |
| If true, min and max has been set for the length parameter.
|
|
double | len_min |
| Minimum for length parameter range.
|
|
double | len_max |
| Maximum for length parameter range.
|
|
min_base * | mp |
| Pointer to the user-specified minimizer.
|
|
std::vector< ubvector > | Kinvf |
| Inverse covariance matrix times function vector.
|
|
size_t | np |
| The number of points.
|
|
size_t | nd_in |
| The number of dimensions of the inputs.
|
|
size_t | nd_out |
| The number of dimensions of the outputs.
|
|
boost::numeric::ublas::vector< double > | x |
| The data.
|
|
bool | data_set |
| True if the data has been specified.
|
|
ubvector | min |
| Minimum values for rescaling.
|
|
ubvector | max |
| Maximum values for rescaling.
|
|
bool | rescaled |
| True if the data needs to be rescaled.
|
|
template<class vec_t = boost::numeric::ublas::vector<double>, class mat_t = boost::numeric::ublas::vector<double>, class mat_row_t = boost::numeric::ublas::matrix_row <boost::numeric::ublas::vector<double> >>
template<class mat2_row_t , class mat2_t , class vec2_t >
int o2scl::interpm_krige_optim< vec_t, mat_t, mat_row_t >::set_data |
( |
size_t |
n_in, |
|
|
size_t |
n_out, |
|
|
size_t |
n_points, |
|
|
mat_t & |
user_x, |
|
|
mat2_t & |
user_y, |
|
|
const vec2_t & |
len_precompute, |
|
|
bool |
rescale = false , |
|
|
bool |
err_on_fail = true |
|
) |
| |
|
inline |