Intrepid
Static Public Member Functions | List of all members
Intrepid::TabulatorTet< Scalar, ArrayScalar, 0 > Class Template Reference

This is specialized on 0th derivatives to make the tabulate function run through recurrence relations. More...

#include <Intrepid_HGRAD_TET_Cn_FEM_ORTH.hpp>

Static Public Member Functions

static void tabulate (ArrayScalar &outputValues, const int deg, const ArrayScalar &inputPoints)
 basic tabulate mathod evaluates the basis functions at inputPoints into outputValues.
 
static int idx (int p, int q, int r)
 function for indexing from orthogonal expansion indices into linear space p+q+r = the degree of the polynomial.
 
static void jrc (const Scalar &alpha, const Scalar &beta, const int &n, Scalar &an, Scalar &bn, Scalar &cn)
 function for computing the Jacobi recurrence coefficients so that
 

Detailed Description

template<typename Scalar, typename ArrayScalar>
class Intrepid::TabulatorTet< Scalar, ArrayScalar, 0 >

This is specialized on 0th derivatives to make the tabulate function run through recurrence relations.

Definition at line 142 of file Intrepid_HGRAD_TET_Cn_FEM_ORTH.hpp.

Member Function Documentation

◆ idx()

template<typename Scalar , typename ArrayScalar >
static int Intrepid::TabulatorTet< Scalar, ArrayScalar, 0 >::idx ( int p,
int q,
int r )
inlinestatic

function for indexing from orthogonal expansion indices into linear space p+q+r = the degree of the polynomial.

Parameters
p[in] - the first index
q[in] - the second index
r[in] - the third index

Definition at line 162 of file Intrepid_HGRAD_TET_Cn_FEM_ORTH.hpp.

◆ jrc()

template<typename Scalar , typename ArrayScalar >
static void Intrepid::TabulatorTet< Scalar, ArrayScalar, 0 >::jrc ( const Scalar & alpha,
const Scalar & beta,
const int & n,
Scalar & an,
Scalar & bn,
Scalar & cn )
inlinestatic

function for computing the Jacobi recurrence coefficients so that

Parameters
alpha[in] - the first Jacobi weight
beta[in] - the second Jacobi weight
n[n] - the polynomial degree
an[out] - the a weight for recurrence
bn[out] - the b weight for recurrence
cn[out] - the c weight for recurrence

The recurrence is

\[
P^{\alpha,\beta}_{n+1} = \left( a_n + b_n x\right) P^{\alpha,\beta}_n - c_n P^{\alpha,\beta}_{n-1}
\]

, where

\[
P^{\alpha,\beta}_0 = 1
\]

Definition at line 184 of file Intrepid_HGRAD_TET_Cn_FEM_ORTH.hpp.

◆ tabulate()

template<class Scalar , class ArrayScalar >
void Intrepid::TabulatorTet< Scalar, ArrayScalar, 0 >::tabulate ( ArrayScalar & outputValues,
const int deg,
const ArrayScalar & inputPoints )
static

basic tabulate mathod evaluates the basis functions at inputPoints into outputValues.

Parameters
[out]outputValues- rank 2 array (F,P) holding the basis functions at points.
[in]deg- the degree up to which to tabulate the bases
[in]inputPoints- a rank 2 array containing the points at which to evaluate the basis functions.

Definition at line 147 of file Intrepid_HGRAD_TET_Cn_FEM_ORTHDef.hpp.


The documentation for this class was generated from the following files: