
User’s Guide for SuiteSparseQR, a multifrontal
multithreaded sparse QR factorization package (with

optional GPU acceleration)

Timothy A. Davis*, Sencer Nuri Yeralan, Sanjay Ranka, Wissam Sid-Lakhdar

VERSION 4.3.1, Jan 10, 2024

Abstract

SuiteSparseQR is an implementation of the multifrontal sparse QR factorization
method. Parallelism is exploited both in the BLAS and across different frontal matrices
using Intel’s Threading Building Blocks, a shared-memory programming model for
modern multicore architectures. It can obtain a substantial fraction of the theoretical
peak performance of a multicore computer. The package is written in C++ with user
interfaces for MATLAB, C, and C++. Both real and complex sparse matrices are
supported.

1 Introduction

The algorithms used in SuiteSparseQR are discussed in a companion paper, [7], and an
overview of how to use the software is given in [6]. This document gives detailed information
on the installation and use of SuiteSparseQR.

SPQR, Copyright (c) 2008-2023, Timothy A Davis. All Rights Reserved.
SPDX-License-Identifier: GPL-2.0+
The GPU modules in SPQRGPU are under a different copyright:
SPQRGPU, Copyright (c) 2008-2023, Timothy A Davis, Sanjay Ranka, Sencer Nuri

Yeralan, and Wissam Sid-Lakhdar, All Rights Reserved.

2 Using SuiteSparseQR in MATLAB

The simplest way to use SuiteSparseQR is via MATLAB. Its syntax includes every feature of
the MATLAB qr in version R2009a and earlier [12], plus additional features not available in
MATLAB. It is also a replacement for x=A\b for least-squares problems and underdetermined
systems. In addition to substantial gains in performance (10x to 100x is not uncommon, up

*email: DrTimothyAldenDavis@gmail.com. http://www.suitesparse.com. Portions of this work were
supported by the National Science Foundation, under grants 0203270, 0620286, and 0619080.

1

to 10,000x has been observed), SuiteSparseQR adds new capabilities that are not present
in MATLAB. For example, it provides an efficient method for finding the minimum 2-norm
solution to an underdetermined system.

2.1 Installing SuiteSparseQR for use in MATLAB

All packages in SuiteSparse, including SuiteSparseQR and the codes it relies on (AMD, CO-
LAMD, CHOLMOD, METIS, CCAMD, and CCOLAMD) are compiled with a single com-
mand typed into the MATLAB Command Window. SuiteSparseQR uses the LAPACK and
BLAS libraries provided with MATLAB; you do not need to do anything to use these. Below
are step-by-step instructions for compiling all of SuiteSparse (including SuiteSparseQR), and
optional instructions on using METIS.

2.1.1 Now you’re ready to compile (on any operating system)

Type these commands in the MATLAB window:

cd SuiteSparse

SuiteSparse_install

You will be asked if you want to run some demos. I recommend that you do this to ensure
your functions have been installed correctly. Next type the command

pathtool

and examine your MATLAB path. The various SuiteSparse directories have been placed in
your path. Click “save” to save this path for future MATLAB sessions. If this fails, you do
not have permission to modify the pathdef.m file (it is shared by all users).

SuiteSparse now has a SuiteSparse_paths.m that you can add to your startup.m. An
alternative is to type the command:

path

and cut-and-paste the paths displayed there into your own startup.m file, prepending the
command addpath to each line.

Your startup.m file should appear in the directory in which MATLAB starts. Failing
that, every time you start MATLAB, find your startup.m file and run it. For more help,
type doc startup in MATLAB.

The SuiteSparse_install script works on any version of MATLAB (Linux/Unix, Mac,
or Windows) if you have a C++ compiler. The install script will detect if you have placed
the METIS directory in the right place, and will compile it for use with SuiteSparseQR if
it finds it there. Otherwise METIS will be skipped (the install script will tell you if it finds
METIS or not).

2

2.2 Functions provided to the MATLAB user

Three primary functions are available:

1. spqr, a replacement for the MATLAB qr

2. spqr_solve, a replacement for x=A\b when A is sparse and rectangular. It works for
the square case, too, but x=A\b will be faster (using LU or Cholesky factorization).
spqr_solve is a good method for ill-conditioned or rank-deficient square matrices,
however.

3. spqr_qmult, which multiplies Q (stored in Householder vector form) times a matrix x.

Their syntax is described below in the table below. The permutation P is chosen to
reduce fill-in and to return R in upper trapezoidal form if A is estimated to have less than
full rank. The opts parameter provides non-default options (refer to the next section). The
output Q can be optionally returned in Householder form, which is far sparser than returning
Q as a sparse matrix.

R = spqr (A) Q-less QR factorization
R = spqr (A,0) economy variant (size(R,1) = min(m,n))
R = spqr (A,opts) as above, with non-default options
[Q,R] = spqr (A) A=Q*R factorization
[Q,R] = spqr (A,0) economy variant (size(Q,2) = size(R,1) = min(m,n))
[Q,R] = spqr (A,opts) A=Q*R, with non-default options
[Q,R,P] = spqr (A) A*P=Q*R where P reduces fill-in
[Q,R,P] = spqr (A,0) economy variant (size(Q,2) = size(R,1) = min(m,n))
[Q,R,P] = spqr (A,opts) as above, with non-default options
[C,R] = spqr (A,B) as R=spqr(A), also returns C=Q’*B

[C,R] = spqr (A,B,0) economy variant (size(C,1) = size(R,1) = min(m,n))
[C,R] = spqr (A,B,opts) as above, with non-default options
[C,R,P] = spqr (A,B) as R=spqr(A*P), also returns C=Q’*B

[C,R,P] = spqr (A,B,0) economy variant (size(C,1) = size(R,1) = min(m,n))
[C,R,P] = spqr (A,B,opts) as above, with non-default options
x = spqr_solve (A,B) x=A\B

[x,info] = spqr_solve (A,B,opts) as above, with statistics and non-default parameters
Y = spqr_qmult (Q,X,k) computes Q’*X, Q*X, X*Q’, or X*Q (selected with k)

2.3 The opts parameter

The opts struct provides control over non-default parameters for SuiteSparseQR. Entries
not present in opts are set to their defaults.

� opts.tol: columns that have 2-norm <= opts.tol are treated as zero. The default is
20*(m+n)*eps*sqrt(max(diag(A’*A))) where [m n]=size(A).

� opts.econ: number of rows of R and columns of Q to return. The default is m. Using
n gives the standard economy form (as in the MATLAB qr(A,0)). A value less than
the estimated rank r is set to r, so opts.econ=0 gives the “rank-sized” factorization,
where size(R,1)==nnz(diag(R))==r.

3

� opts.ordering: a string describing which column ordering method to use. Let
[m2 n2]=size(S) where S is obtained by removing singletons from A. The singleton
permutation places A*P in the form [A11 A12 ; 0 S] where A11 is upper triangular
with diagonal entries all greater than opts.tol.

The default is to use COLAMD if m2<=2*n2; otherwise try AMD. Let f be the flops for
chol((S*P)’*(S*P)) with the ordering P found by AMD. Then if f/nnz(R) >= 500

and nnz(R)/nnz(S) >= 5 then try METIS, and take the best ordering found (AMD
or METIS); otherwise use AMD without trying METIS. If METIS is not installed then
the default ordering is to use COLAMD if m2<=2*n2 and to use AMD otherwise.

The available orderings are:

’default’: the default ordering.

’amd’: use amd(S’*S).

’colamd’: use colamd(S).

’metis’: use metis(S’*S), only if METIS is installed.

’best’: try all three (AMD, COLAMD, METIS) and take the best.

’bestamd’: try AMD and COLAMD and take the best.

’fixed’: use P=I; this is the only option if P is not present in the output.

’natural’: singleton removal only.

� opts.Q: a string describing how Q is to be returned. The default is ’discard’ if
Q is not present in the output, or ’matrix’ otherwise. If Q is present and opts.Q

is ’discard’, then Q=[] is returned (thus R=spqr(A*P) is [Q,R,P]=spqr(A) where
spqr finds P but Q is discarded instead). The usage opts.Q=’matrix’ returns Q as a
sparse matrix where A=Q*R or A*P=Q*R. Using opts.Q=’Householder’ returns Q as a
struct containing the Householder reflections applied to A to obtain R, resulting in a
far sparser Q than the ’matrix’ option.

� opts.permutation: a string describing how P is to be returned. The default is
’matrix’, so that A*P=Q*R. Using ’vector’ gives A(:,P)=Q*R instead.

� opts.spumoni: an integer k that acts just like spparms(’spumoni’,k).

� opts.min2norm: used by spqr_solve; you can use ’basic’ (the default), or ’min2norm’.
Determines the kind of solution that spqr_solve computes for underdetermined sys-
tems. Has no effect for least-squares problems; ignored by spqr itself.

2.4 Examples on how to use the MATLAB interface

To solve a least-squares problem, or to find the basic solution to an underdetermined system,
just use x = spqr_solve(A,b) in place of x=A\b. To compute the QR factorization, use
[Q,R]=spqr(A) instead of [Q,R]=qr(A). Better results can be obtained by discarding Q with
the usage R=spqr(A) (in place of R=qr(A)), or by requesting Q in Householder form with
[Q,R]=spqr(A,opts) where opts.Q=’Householder’. The latter option is not available in

4

MATLAB. To use a fill-reducing ordering, simply use any of the syntaxes above with P as
an output parameter.

The least-squares solution of an overdetermined system A*x=b with m>n (where A has
rank n) can be found in one of at least seven ways (in increasing order of efficiency, in time
and memory):

x = pinv(full(A)) * b ; impossible for large A

[Q,R] = spqr (A) ; high fill-in in R,
x = R\(Q’*b) ; Q costly in matrix form
[Q,R,P] = spqr (A) ; low fill-in in R,
x = P*(R\(Q’*b)) ; Q costly in matrix form
[Q,R,P] = spqr (A,struct(’Q’,’Householder’)) ; low fill-in in R,
x = P*(R\spqr_qmult (Q,b,0)) ; Q in efficient Householder form
[c,R,P] = spqr (A,b) ; Q not kept,
x = P*(R\c) ; P a permutation matrix
[c,R,p] = spqr (A,b,0) ; Q not kept,
y = (R\c) ; x(p) = y p a permutation vector
x = spqr_solve (A,b) ; less memory and better handling

of rank-deficient matrices

The minimum-norm solution of an underdetermined system A*x=b with m<n can be found
in one of five ways (in increasing order of efficiency, in time and memory):

x = pinv(full(A)) * b ; impossible for large A

[Q,R] = spqr (A’) ; high fill-in in R,
x = Q*(R’\b) ; Q costly in matrix form
[Q,R,P] = spqr (A’) ; low fill-in in R,
x = Q*(R’\(P’*b)) ; Q costly in matrix form
[Q,R,P] = spqr (A’,struct(’Q’,’Householder’)) ; low fill-in in R,
x = spqr_qmult (Q,R’\(P’*b),1) ; Q in efficient Householder form
opts.solution = ’min2norm’ ; as 4th option above, but faster,
x = spqr_solve (A,b,opts) ; less memory, and better handling

of rank-deficient matrices

Note that spqr_solve uses a fill-reducing ordering, by default. It can be disabled or
modified using a non-default opts parameter (opts.ordering, specifically).

3 Using SuiteSparseQR in C and C++

SuiteSparseQR relies on CHOLMOD for its basic sparse matrix data structure, a compressed
sparse column format. CHOLMOD provides interfaces to the AMD, COLAMD, and METIS
ordering methods, supernodal symbolic Cholesky factorization (namely, symbfact in MAT-
LAB), functions for converting between different data structures, and for basic operations
such as transpose, matrix multiply, reading a matrix from a file, writing a matrix to a file,
and many other functions.

3.1 Installing the C/C++ library

In Linux/MacOs, type make at the command line, in either the SuiteSparse directory (which
compiles all of SuiteSparse) or in the SuiteSparse/SPQR directory (which just compiles

5

SuiteSparseQR and the libraries it requires). SuiteSparseQR will be compiled, and a set of
simple demos will be run (including the one in the next section).

The use of make is optional. The top-level SPQR/Makefile is a simple wrapper that uses
cmake to do the actual build. The CMakeLists.txt file can be imported into MS Visual
Studio, for example.

If SuiteSparseQR is compiled with -DNEXPERT, the “expert” routines in SuiteSparseQR_expert.cpp

are not compiled. The expert routines are included by default.
To fully test 100% of the lines of SuiteSparseQR, go to the Tcov directory and type make.

This will work for Linux only.
To install the shared library into /usr/local/lib and /usr/local/include, do make install.

To uninstall, do make uninstall. For more options, see the SuiteSparse/README.txt file.

3.2 C/C++ Example

The C++ interface is written using templates for handling both real and complex matrices.
The simplest function computes the MATLAB equivalent of x=A\b and is almost as simple:

#include "SuiteSparseQR.hpp"

X = SuiteSparseQR <double> (A, B, cc) ;

The C version of this function is almost identical:

#include "SuiteSparseQR_C.h"

X = SuiteSparseQR_C_backslash_default (A, B, cc) ;

Below is a simple C++ program that illustrates the use of SuiteSparseQR (with 64-bit
integer indices). The program reads in a least-squares problem from stdin in MatrixMarket
format [4], solves it, and prints the norm of the residual and the estimated rank of A. The
comments reflect the MATLAB equivalent statements. The C version of this program is
identical except for the #include statement and call to SuiteSparseQR which are replaced
with the C version of the statement above, and C-style comments.

#include "SuiteSparseQR.hpp"

int main (int argc, char **argv)

{

cholmod_common Common, *cc ;

cholmod_sparse *A ;

cholmod_dense *X, *B, *Residual ;

double rnorm, one [2] = {1,0}, minusone [2] = {-1,0} ;

int mtype ;

// start CHOLMOD

cc = &Common ;

cholmod_l_start (cc) ;

// load A

A = (cholmod_sparse *) cholmod_l_read_matrix (stdin, 1, &mtype, cc) ;

// B = ones (size (A,1),1)

B = cholmod_l_ones (A->nrow, 1, A->xtype, cc) ;

6

// X = A\B

X = SuiteSparseQR <double> (A, B, cc) ;

// rnorm = norm (B-A*X)

Residual = cholmod_l_copy_dense (B, cc) ;

cholmod_l_sdmult (A, 0, minusone, one, X, Residual, cc) ;

rnorm = cholmod_l_norm_dense (Residual, 2, cc) ;

printf ("2-norm of residual: %8.1e\n", rnorm) ;

printf ("rank %ld\n", cc->SPQR_istat [4]) ;

// free everything and finish CHOLMOD

cholmod_l_free_dense (&Residual, cc) ;

cholmod_l_free_sparse (&A, cc) ;

cholmod_l_free_dense (&X, cc) ;

cholmod_l_free_dense (&B, cc) ;

cholmod_l_finish (cc) ;

return (0) ;

}

To use SuiteSparseQR with 32-bit integer indices in all of its matrices, simply replace all
cholmod_l_* calls abovce to cholmod_*, and use this for SPQR:

X = SuiteSparseQR <double,int32_t> (A, B, cc) ;

3.3 C++ Syntax

All features available to the MATLAB user are also available to both the C and C++
interfaces using a syntax that is not much more complicated than the MATLAB syntax.
Additional features not available via the MATLAB interface include the ability to compute
the symbolic and numeric factorizations separately (for multiple matrices with the same
nonzero pattern but different numerical values). The following is a list of user-callable C++
functions and what they can do:

1. SuiteSparseQR: an overloaded function that provides functions equivalent to spqr and
spqr_solve in the SuiteSparseQR MATLAB interface.

2. SuiteSparseQR_factorize: performs both the symbolic and numeric factorizations
and returns a QR factorization object such that A*P=Q*R. It always exploits singletons.

3. SuiteSparseQR_symbolic: performs the symbolic factorization and returns a QR fac-
torization object to be passed to SuiteSparseQR_numeric. It does not exploit single-
tons.

4. SuiteSparseQR_numeric: performs the numeric factorization on a QR factorization
object, either one constructed by SuiteSparseQR_symbolic, or reusing one from a
prior call to SuiteSparseQR_numeric for a matrix A with the same pattern as the first
one, but with different numerical values.

5. SuiteSparseQR_solve: solves a linear system using the object returned by
SuiteSparseQR_factorize or SuiteSparseQR_numeric, namely x=R\b,
x=P*R\b, x=R’\b, or x=R’\(P’*b).

7

6. SuiteSparseQR_qmult: provides the same function as spqr_qmult in the MATLAB
interface, computing y=Q’*x, y=Q*x, y=x*Q’, or y=x*Q. It uses the efficient House-
holder reprensentation of Q, which represents a square orthonormal matrix computed
by SuiteSparseQR_factorize or SuiteSparseQR_numeric. The Householder repre-
sentation always represents a square orthonormal matrix, regardless of whether Q is a
full or economy factor. SuiteSparseQR_qmult applies this square matrix to compute
its result y.

7. SuiteSparseQR_min2norm: finds the minimum 2-norm solution to an underdetermined
linear system.

8. SuiteSparseQR_free: frees the QR factorization object.

3.4 Details of the C/C++ Syntax

For further details of how to use the C/C++ syntax, please refer to the definitions and
descriptions in the following files:

1. SuiteSparse/SPQR/Include/SuiteSparseQR.hpp describes each C++ function. Both
double and std::complex<double> matrices are supported.

2. SuiteSparse/SPQR/Include/SuiteSparseQR_definitions.h describes definitions
common to both C and C++ functions. For example, each of the ordering methods is
given a #define’d name. The default is ordering = SPQR_ORDERING_DEFAULT, and
the default tolerance is given by tol = SPQR_DEFAULT_TOL.

3. SuiteSparse/SPQR/Include/SuiteSparseQR_C.h describes the C-callable functions.

Version 4.0 of SuiteSparseQR adds a 32-bit version, where the indices of its sparse matri-
ces are all int32_t, contributed by Raye Kimmerer. To use this version, add int32_t as the
second template parameter to all C++ methods, and use the cholmod_* methods instead
of cholmod_l_* to create and access its input/output matrices.

The C/C++ options corresponding to the MATLAB opts parameters and the con-
tents of the optional info output of spqr_solve are described below. Let cc be the
CHOLMOD Common object, containing parameter settings and statistics. All are of type
double, except for SPQR_istat which is int64_t, cc->memory_usage which is size_t, and
cc->SPQR_nthreads which is int. Parameters include:

cc->SPQR_grain the same as opts.grain in the MATLAB interface
cc->SPQR_small the same as opts.small in the MATLAB interface
cc->SPQR_nthreads the same as opts.nthreads in the MATLAB interface

Other parameters, such as opts.ordering and opts.tol, are input parameters to the
various C/C++ functions. Others such as opts.solution=’min2norm’ are separate func-
tions in the C/C++ interface. Refer to the files listed above for details. Output statistics
include:

8

cc->SPQR_flopcount_bound an upper bound on the flop count
cc->SPQR_tol_used the tolerance used (opts.tol)
cc->SPQR_istat [0] upper bound on nnz(R)

cc->SPQR_istat [1] upper bound on nnz(H)

cc->SPQR_istat [2] number of frontal matrices
cc->SPQR_istat [3] unused
cc->SPQR_istat [4] estimate of the rank of A
cc->SPQR_istat [5] number of column singletons
cc->SPQR_istat [6] number of row singletons
cc->SPQR_istat [7] ordering used
cc->memory_usage memory used, in bytes

The upper bound on the flop count is found in the analysis phase, which ignores the
numerical values of A (the same analysis phase operates on both real and complex matrices).
Thus, if you are factorizing a complex matrix, multiply this statistic by 4.

4 GPU acceleration

As of version 2.0.0, SuiteSparseQR now includes GPU acceleration. It can exploit a single
NVIDIA GPU, via CUDA. The packages SuiteSparse GPURuntime and GPUQREngine are
also required (they should appear in the SuiteSparse directory, along with SPQR).

At run time, you must also enable the GPU by setting Common->useGPU to true. Before
calling any SuiteSparseQR function, you must poll the GPU to set the available memory.
Below is a sample code that initializes CHOLMOD and then polls the GPU for use in
SuiteSparseQR.

size_t total_mem, available_mem ;

cholmod_common *cc, Common ;

cc = &Common ;

cholmod_l_start (cc) ;

cc->useGPU = true ;

cholmod_l_gpu_memorysize (&total_mem, &available_mem, cc) ;

cc->gpuMemorySize = available_mem ;

if (cc->gpuMemorySize <= 1)

{

printf ("no GPU available\n") ;

}

// Subsequent calls to SuiteSparseQR will use the GPU, if available

See Demo/qrdemo_gpu.cpp for an extended example, which can be compiled via make gpu

in the Demo directory.
GPU acceleration is not yet available via the MATLAB mexFunction interface. We

expect to include this in a future release.
For a detailed technical report on the GPU-accelerated algorithm, see qrgpu_paper.pdf

in the Doc directory.

9

5 Requirements and Availability

SuiteSparseQR requires four prior Collected Algorithms of the ACM: CHOLMOD [5, 10]
(version 1.7 or later), AMD [1, 2], and COLAMD [8, 9] for its ordering/analysis phase and for
its basic sparse matrix data structure, and the BLAS [11] for dense matrix computations on
its frontal matrices; also required is LAPACK [3] for its Householder reflections. An efficient
implementation of the BLAS is strongly recommended, either vendor-provided (such as the
Intel MKL, the AMD ACML, or the Sun Performance Library) or other high-performance
BLAS such as those of [13].

The use of Intel’s Threading Building Blocks is optional [15], but without it, only par-
allelism within the BLAS can be exploited (if available). SuiteSparseQR can optionally use
METIS 4.0.1 [14] and two constrained minimum degree ordering algorithms, CCOLAMD and
CAMD [5], for its fill-reducing ordering options. SuiteSparseQR can be compiled without
these ordering methods.

In addition to appearing as Collected Algorithm 8xx of the ACM, SuiteSparseQR is
available at http://www.suitesparse.com. See SPQR/Doc/License.txt for the license. Al-
ternative licenses are also available; contact the author for details.

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):381–388, 2004.

[3] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, 3rd edition, 1999.

[4] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The Matrix
Market: A web resource for test matrix collections. In R. F. Boisvert, editor, Quality of
Numerical Software, Assessment and Enhancement, pages 125–137. Chapman & Hall,
London, 1997. (http://math.nist.gov/MatrixMarket).

[5] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM
Trans. Math. Software, 35(3), 2009.

[6] T. A. Davis. Algorithm 8xx: SuiteSparseQR, a multifrontal multithreaded sparse qr
factorization package. ACM Trans. Math. Software, 2008. under submission.

[7] T. A. Davis. Multifrontal multithreaded rank-revealing sparse QR factorization. ACM
Trans. Math. Software, 2008. under submission.

10

http://www.suitesparse.com

[8] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a
column approximate minimum degree ordering algorithm. ACM Trans. Math. Software,
30(3):377–380, 2004.

[9] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):353–376, 2004.

[10] T. A. Davis and W. W. Hager. Dynamic supernodes in sparse Cholesky up-
date/downdate and triangular solves. ACM Trans. Math. Software, 35(4), 2009.

[11] J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[12] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and
implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356, 1992.

[13] K. Goto and R. van de Geijn. High performance implementation of the level-3 BLAS.
ACM Trans. Math. Software, 35(1):4, July 2008. Article 4, 14 pages.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20:359–392, 1998.

[15] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media, Sebastopol, CA, 2007.

11

	Introduction
	Using SuiteSparseQR in MATLAB
	Installing SuiteSparseQR for use in MATLAB
	Now you're ready to compile (on any operating system)

	Functions provided to the MATLAB user
	The opts parameter
	Examples on how to use the MATLAB interface

	Using SuiteSparseQR in C and C++
	Installing the C/C++ library
	C/C++ Example
	C++ Syntax
	Details of the C/C++ Syntax

	GPU acceleration
	Requirements and Availability

