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1 Preamble

Abstract: This package gives access to the database of Lie p-rings of order at most p7 as determined by
Mike Newman, Eamonn O’Brien and Michael Vaughan-Lee, see [NOVL03] and [OVL05], and it provides
some functionality to work with these Lie p-rings.

Copyright: The LiePRing package is free software; you can redistribute it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your opinion) any later version. The LiePRing package is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

How to cite this package: If you use the LiePRing package, then please cite it as: Michael Vaughan-Lee
and Bettina Eick, LiePRing – A GAP Package for computing with nilpotent Lie rings of prime-power order
(2014), see www.gap-system.org/Packages

Acknowlegdements: The Lazard correspondence induces a one-to-one correspondence between the Lie
p-rings of order pn and class less than p and the p-groups of order pn and class less than p. This package
provides a function to evaluate this correspondence; this function has been implemented and given to us by
Willem de Graaf.



2 Lie p-rings

In this preliminary chapter we recall some of theoretic background of Lie rings and Lie p-rings. We refer to
Chapter 5 in [Khu] for some further details. Throughout we assume that p stands for a rational prime.

A Lie ring L is an additive abelian group with a multiplication that is alternating, bilinear and satisfies the
Jacobi identity. We denote the product of two elements g and h of L with gh.

A subset I ⊆ L is an ideal in the Lie ring L if it is a subgroup of the additive group of L and it satisfies
al ∈ I for all a ∈ I and l ∈ L. As the multiplication in L is alternating, it follows that la ∈ I for all l ∈ L and
a ∈ I . Note that if I and J are ideals in L, then I +J = {a +b | a ∈ I , b ∈ J} and IJ = 〈ab | a ∈ I , b ∈ J 〉+
are ideals in L.

A subset U ⊆ L is a subring of the Lie ring L if U is a Lie ring with respect to the addition and the
multiplication of L. Every ideal in L is also a subring of L. As usual, for an ideal I in L the quotient L/I
has the structure of a Lie ring, but this does not hold for subrings.

The lower central series of the Lie ring L is the series of ideals L = γ1(L) ≥ γ2(L) ≥ . . . defined by
γi (L) = γi−1(L)L. We say that L is nilpotent if there exists a natural number c with γc+1(L) = {0}. The
smallest natural number with this property is the class of L.

The notion of nilpotence now allows to state the central definition of this package. A Lie p-ring is a Lie
ring that is nilpotent and has pn elements for some natural number n.

Every finite dimensional Lie algebra over a field with p elements is an example for a Lie ring with pn

elements. Note that there exist non-nilpotent Lie algebras of this type: the Lie algebra consisting of all n×n
matrices with trace 0 and n ≥ 3 is an example. Thus not every Lie ring with pn elements is nilpotent. (In
contrast to the group case, where every group with pn elements is nilpotent!)

For a Lie p-ring L we define the series L = λ1(L) ≥ λ2(L) ≥ . . . via λi+1(L) = λi (L)L + pλi (L). This
series is the lower exponent-p central series of L. Its length is the p-class of L. If |L/λ2(L)| = pd , then d
is the minimal generator number of L. Similar to the p-group case, one can observe that this is indeed the
cardinality of a generating set of smallest possible size.

Each Lie p-ring L has a central series L = L1 ≥ . . . ≥ Ln ≥ {0} with quotients of order p. Choose
li ∈ Li \Li+1 for 1 ≤ i ≤ n. Then (l1, . . . , ln) is a generating set of L satisfying that pli ∈ Li+1 and li lj ∈ Li+1

for 1 ≤ j < i ≤ n. We call such a generating sequence a basis for L and we say that L has dimension n.



3 LiePRings in GAP

This package introduces a new datastructure that allows to define and compute with Lie p-rings in GAP.
We first describe this datastructure in the case of ordinary Lie p-rings; that is, Lie p-rings for a fixed prime
p with given structure constants. Then we show how this datastructure can also be used to define so-called
’generic’ Lie p-rings; that is, Lie p-rings with indeterminate prime p.

3.1 Ordinary Lie p-rings

Let p be a prime and let L be a Lie p-ring of order pn . Let (l1, . . . , ln) be a basis for L. Then there exist
coefficients ci ,j ,k ∈ {0, . . . , p − 1} so that the following relations hold in L for 1 ≤ i , j ≤ n with i 6= j :

li · lj =

n∑
k=i+1

ci ,j ,k lk ,

pli =

n∑
k=i+1

ci ,i ,k lk ·

These structure constants define the Lie p-ring L. As the multiplication in a Lie p-ring is anticommutative,
it follows that ci ,j ,k = −cj ,i ,k holds for each k and each i 6= j . Thus the structure constants ci ,j ,k for i ≥ j
are sufficient to define the Lie p-ring L.

This package contains the new datastructure LiePRing that allows to define Lie p-rings via their structure
constants ci ,j ,k . To use this datastructure, we first collect all relevant information into a record as follows:

dim
the dimension n of L;

prime
the prime p of L;

tab
a list with structure constants [c1,1, c2,1, c2,2, c3,1, c3,2, c3,3, . . .].

Each entry ci ,j in the list tab is a list [k1, ci ,j ,k1 , k2, ci ,j ,k2 , . . .] so that k1 < k2 < . . . and the entries
ci ,j ,k1 , ci ,j ,k2 , . . . are the non-zero structure contants in the product li · lj . Thus if li · lj = 0, then ci ,j is
the empty list. If an entry in the list tab is not bound, then it is assumed to be the empty list.

1I LiePRingBySCTable( SC )
I LiePRingBySCTableNC( SC )

These functions create a LiePRing from the structure constants table record SC . The first version checks
that the multiplication defined by tab is alternating and satisfies the Jacobi-identity, the second version
assumes that this is the case and omits these checks. These checks can also be carried out independently via
the following function.



6 Chapter 3. LiePRings in GAP

2I CheckIsLiePRing( L )

This function takes as input an object L created via LiePRingBySCTableNC and checks that the Jacobi
identity holds in this ring.

The following example creates the Lie 2-ring of order 8 with trivial multiplication.

gap> SC := rec( dim := 3, prime := 2, tab := [] );;

gap> L := LiePRingBySCTable(SC);

<LiePRing of dimension 3 over prime 2>

gap> l := BasisOfLiePRing(L);

[ l1, l2, l3 ]

gap> l[1]*l[2];

0

gap> 2*l[1];

0

gap> l[1] + l[2];

l1 + l2

The next example creates a LiePRing of order 54 with non-trivial multiplication.

gap> SC := rec( dim := 4, prime := 5, tab := [ [], [3, 1], [], [4, 1]]);;

gap> L := LiePRingBySCTableNC(SC);;

gap> ViewPCPresentation(L);

[l2,l1] = l3

[l3,l1] = l4

3.2 Generic Lie p-rings

In a generic Lie p-ring, p is allowed to be an indeterminate and the structure constants are allowed to be
polynomials in a finite set of commuting indeterminates. It is generally assumed that the indeterminate with
name p represents the prime, the indeterminate with name w represents the smallest primitive root modulo
the prime and there are further predefined indeterminates with the names x , y , z , t , j , k , m, n, r , s, u and
v . These indeterminates are used in the database of Lie p-rings and they can be obtained via

1I IndeterminateByName( string )

The structure constants records for generic Lie p-rings are similar to those for ordinary Lie p-rings, but have
the additional entry param which is a list containing all indeterminates used in the considered Lie p-ring.
We exhibit an example.

gap> p := IndeterminateByName("p");;

gap> x := IndeterminateByName("x");;

gap> S := rec( dim := 5,

param := [ x ],

prime := p,

> tab := [ [ 4, 1 ], [ 3, 1 ], [ 5, x ], [ 4, 1 ], [ 5, 1 ] ] );;

gap> L := LiePRingBySCTable(S);

<LiePRing of dimension 5 over prime p with parameters [ x ]>

gap> ViewPCPresentation(L);

p*l1 = l4

p*l2 = x*l5

[l2,l1] = l3

[l3,l1] = l4

[l3,l2] = l5
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gap> l := BasisOfLiePRing(L);

[ l1, l2, l3, l4, l5 ]

gap> p*l[1];

l4

gap> l[1]+l[2];

l1 + l2

gap> l[1]*l[2];

-1*l3

3.3 Specialising Lie p-rings

A generic Lie p-ring defines a family of ordinary Lie p-rings by evaluating the parameters contained in
its presentation. It is generally assumed that the indeterminate p is evaluated to a rational prime P and
the indeterminate w is evaluated to the smallest primitive root modulo P (this can be determined via
PrimitiveRootMod(P)). All other indeterminates can take arbitrary integer values (usually these values are
in {0, . . . ,P − 1}, but other choices are possible as well). The following functions allow to evaluate the
indeterminates.

1I SpecialiseLiePRing(L, P, para, vals)

takes as input a generic Lie p-ring L, a rational prime P , a list of indeterminates para and a corresponding list
of values vals. The function returns a new Lie p-ring in which the prime p is evaluated to P , the parameter
w is evaluated to PrimitiveRootMod(P) and the parameters in para are evaluated to vals.

2I SpecialisePrimeOfLiePRing(L, P)

this is a shortcut for SpecialiseLiePRing(L, P, [], []). We exhibit a some example applications.

gap> p := IndeterminateByName("p");;

gap> w := IndeterminateByName("w");;

gap> x := IndeterminateByName("x");;

gap> y := IndeterminateByName("y");;

gap> S := rec( dim := 7,

param := [ w, x, y ],

prime := p,

tab := [ [ ], [ 6, 1 ], [ 6, 1 ], [ 7, 1 ], [ ],

[ 6, x, 7, y ], [ ], [ 7, 1 ], [ 6, w ] ] );

gap> L := LiePRingBySCTable(S);

<LiePRing of dimension 7 over prime p with parameters [ w, x, y ]>

gap> ViewPCPresentation(L);

p*l2 = l6

p*l3 = x*l6 + y*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = w*l6

gap>

gap> SpecialiseLiePRing(L, 7, [x, y], [0,0]);

<LiePRing of dimension 7 over prime 7>

gap> ViewPCPresentation(last);

7*l2 = l6

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7
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[l4,l3] = 3*l6

gap>

gap> SpecialiseLiePRing(L, 11, [x, y], [0,10]);

<LiePRing of dimension 7 over prime 11>

gap> ViewPCPresentation(last);

11*l2 = l6

11*l3 = 10*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = 2*l6

gap>

gap> Cartesian([0,1],[0,1]);

[ [ 0, 0 ], [ 0, 1 ], [ 1, 0 ], [ 1, 1 ] ]

gap> List(last, v -> SpecialiseLiePRing(L, 2, [x,y], v));

[ <LiePRing of dimension 7 over prime 2>,

<LiePRing of dimension 7 over prime 2>,

<LiePRing of dimension 7 over prime 2>,

<LiePRing of dimension 7 over prime 2> ]

It is not necessary to specialise all parameters at once. In particular, it is possible to leave the prime p as
indeterminate and specialize only some of the parameters. (Except for w which is linked to p.)

gap> SpecialiseLiePRing(L, p, [x], [0]);

<LiePRing of dimension 7 over prime p with parameters [ y, w ]>

gap> ViewPCPresentation(ll[4]);

2*l2 = l6

2*l3 = l6 + l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = l6

gap> SpecialiseLiePRing(L, p, [y], [3]);

<LiePRing of dimension 7 over prime p with parameters [ x, w ]>

gap> ViewPCPresentation(ll[4]);

2*l2 = l6

2*l3 = l6 + l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = l6

It is also possible to specialise the prime only, but leave all or some of the parameters indeterminate. Note
that specialising p also specialises w . Again, we continue to use the generic Lie p-ring L as above.

gap> SpecialisePrimeOfLiePRing(L, 29);

<LiePRing of dimension 7 over prime 29 with parameters [ y, x ]>

gap> ViewPCPresentation(last);

29*l2 = l6

29*l3 = x*l6 + y*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7
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[l4,l3] = 2*l6

3I LiePValues(K)

if K is obtained by specialising, then this attribute is set and contains the parameters that have been
specialised and their values.

gap> L := LiePRingsByLibrary(6)[14];

<LiePRing of dimension 6 over prime p with parameters [ x ]>

gap> K := SpecialisePrimeOfLiePRing(L, 5);

<LiePRing of dimension 6 over prime 5 with parameters [ x ]>

gap> LiePValues(K);

[ [ p, w ], [ 5, 2 ] ]

3.4 Subrings of Lie p-rings

Let L be a Lie p-ring with basis (l1, . . . , ln) and let U be a subring of L. Then U is a Lie p-ring and thus
also has a basis (u1, . . . , um). For 1 ≤ i ≤ m we define the coefficients ai ,j ∈ {0, . . . , p − 1} via

ui =

n∑
j=1

ai ,j li

and we denote with A the matrix with entries ai ,j . We say that the basis (u1, . . . , um) is induced if A is in
upper triangular form. Further, the basis (u1, . . . , um) is canonical if A is in upper echelon form; that is, it
is upper triangular, each row in A has leading entry 1 and there are 0’s above the leading entry. Note that
a canonical basis is unique for the subring.

1I LiePSubring(L, gens)

Let L be a (generic or ordinary) Lie p-ring and let gens be a set of elements in L. This function determines a
canonical basis for the subring generated by gens in L and returns the LiePSubring of L generated by gens.
Note that this function may have strange effects for generic Lie p-rings as the following example shows.

gap> L := LiePRingsByLibrary(6)[100];

<LiePRing of dimension 6 over prime p>

gap> l := BasisOfLiePRing(L);

[ l1, l2, l3, l4, l5, l6 ]

gap> U := LiePSubring(L, [5*l[1]]);

WARNING: Dividing by 1/5 in 6.464

<LiePRing of dimension 3 over prime p>

gap> BasisOfLiePRing(U);

[ l1, l4, l6 ]

gap>

gap> K := SpecialisePrimeOfLiePRing(L, 5);

<LiePRing of dimension 6 over prime 5>

gap> b := BasisOfLiePRing(K);

[ l1, l2, l3, l4, l5, l6 ]

gap> LiePSubring(K, [5*b[1]]);

<LiePRing of dimension 2 over prime 5>

gap> BasisOfLiePRing(last);

[ l4, l6 ]

gap>

gap> K := SpecialisePrimeOfLiePRing(L, 7);

<LiePRing of dimension 6 over prime 7>
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gap> b := BasisOfLiePRing(K);

[ l1, l2, l3, l4, l5, l6 ]

gap> U := LiePSubring(L, [5*b[1]]);

<LiePRing of dimension 1 over prime p>

gap> BasisOfLiePRing(U);

[ l1 + 2*l4 ]

2I LiePIdeal(L, gens)

return the ideal of L generated by gens. This function computes a an induced basis for the ideal.

gap> LiePIdeal(L, [l[1]]);

<LiePRing of dimension 5 over prime p>

gap> BasisOfLiePRing(last);

[ l1, l3, l4, l5, l6 ]

3I LiePQuotient(L, U)

return a Lie p-ring isomorphic to L/U where U must be an ideal of L. This function requires that L is an
ordinary Lie p-ring.

gap> LiePIdeal(K, [b[1]]);

<LiePRing of dimension 5 over prime 5>

gap> LiePIdeal(K, [b[2]]);

<LiePRing of dimension 4 over prime 5>

gap> LiePQuotient(K,last);

<LiePRing of dimension 2 over prime 5>

3.5 Elementary functions

The functions described in this section work for ordinary and generic Lie p-rings and their subrings.

1I PrimeOfLiePRing(L)

returns the underlying prime. This can either be an integer or an indeterminate.

2I BasisOfLiePRing(L)

returns a basis for L.

3I DimensionOfLiePRing(L)

returns the dimension of L.

4I ParametersOfLiePRing(L)

returns the list of indeterminates involved in L. If L is a subring of a Lie p-ring defined by structure constants,
then the parameters of the parent are returned.

5I ViewPCPresentation(L)

prints the presentation for L with respect to its basis.
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3.6 Series of subrings

Let L be a generic or ordinary Lie p-ring or a subring of such such a Lie p-ring.

1I LiePLowerCentralSeries(L)

returns the lower central series of L.

2I LiePLowerPCentralSeries(L)

returns the lower exponent-p central series of L.

3I LiePDerivedSeries(L)

returns the derived series of L.

4I LiePMinimalGeneratingSet(L)

returns a minimal generating set of L; that is, a generating set of smallest possible size.

3.7 The Lazard correspondence

The following function has been implemented by Willem de Graaf. It uses the Baker-Campbell-Hausdorff
formula as described in [CdGVL12] and it is based on the Liering package [CdG10].

1I PGroupByLiePRing(L)

Let L be an ordinary Lie p-ring with cl(L) < p. Then this function returns the p-group G obtained from L
via the Lazard correspondence.



4 The Database

This package gives access to the database of Lie p-rings of order at most p7 as determined by Mike Newman,
Eamonn O’Brien and Michael Vaughan-Lee, see [NOVL03] and [OVL05]. A description of the database can
also be found in [VL13].

For each n ∈ {1, . . . , 7} this package contains a (finite) list of generic presentations of Lie p-rings. For each
prime p ≥ 5, each of the generic Lie p-rings gives rise to a family of Lie p-rings over the considered prime
p by specialising the indeterminates to a certain list of values. The resulting lists of Lie p-rings provides a
complete and irredundant set of isomorphism type representatives of the Lie p-rings of order pn . The generic
Lie p-rings of p-class at most 2 can also be considered for the prime p = 3 and yield a list of isomorphism
type representatives for the Lie p-rings of order 3n and p-class at most 2.

The Lazard correspondence has been used to check the correctness of the database of Lie p-rings: for various
small primes it has been checked that the Lie p-rings of this database define non-isomorphic finite p-groups.

In the following we describe functions to access the database. Throughout this chapter, we assume that
dim ∈ {1, . . . , 7} and P is a prime with P 6= 2.

4.1 Accessing Lie p-rings

1I LiePRingsByLibrary( dim )
I LiePRingsByLibrary( dim, gen, cl )

returns the generic Lie p-rings of dimension dim in the database. The second form returns the Lie p-rings
of minimal generator number gen and p-class cl only.

2I LiePRingsByLibrary( dim, P )
I LiePRingsByLibrary( dim, P, gen, cl )

returns isomorphism type representatives of ordinary Lie p-rings of dimension dim for the prime P . The
second form returns the Lie p-rings of minimal generator number gen and p-class cl only. The function
assumes P ≥ 3 and for P = 3 there are only the Lie p-rings of p-class at most 2 available.

The first example yields the generic Lie p-rings of dimension 4.

gap> LiePRingsByLibrary(4);

[ <LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p with parameters [ w ]>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,
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<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p> ]

The next example yields the isomorphism type representatives of Lie p-rings of dimension 3 for the prime 5.

gap> LiePRingsByLibrary(3, 5);

[ <LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5> ]

The following example extracts the generic Lie p-rings of dimension 5 with minimal generator number 2 and
p-class 4.

gap> LiePRingsByLibrary(5, 2, 4);

[ <LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p> ]

Finally, we determine the isomorphism type representatives of Lie p-rings of dimension 5, minimal generator
number 2 and p-class 4 for the prime 7.

gap> LiePRingsByLibrary(5, 7, 2, 4);

[ <LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7> ]
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4.2 Numbers of Lie p-rings

1I NumberOfLiePRings( dim )

returns the number of generic Lie p-rings in the database of the considered dimension for dim{1, . . . , 7}.

gap> List([1..7], x -> NumberOfLiePRings(x));

[ 1, 2, 5, 15, 75, 542, 4773 ]

2I NumberOfLiePRings( dim, P )

returns the number of isomorphism types of ordinary Lie p-rings of order Pdim in the database. If P ≥ 5,
then this is the number of all isomorphism types of Lie p-rings of order Pdim and if P = 3 then this is the
number of all isomorphism types of Lie p-rings of p-class at most 2. If P ≥ 7, then this number coincides
with NumberSmallGroups(Pdim).

3I NumberOfLiePRingsInFamily( L )

returns the number of Lie p-rings associated to L as a polynomial in p and possibly some residue classes.

gap> L := LiePRingsByLibrary(7)[780];

<LiePRing of dimension 7 over prime p with parameters

[ w, x, y, z, t, s, u, v ]>

gap> NumberOfLiePRingsInFamily(L);

-1/3*p^5*(p-1,3)+p^5-1/3*p^4*(p-1,3)+p^4-1/3*p^3*(p-1,3)+p^3-1/3*p^2*(p-1,3)

+p^2-p*(p-1,3)+3*p-3/2*(p-1,3)+9/2

4.3 Searching the database

We now consider a generic Lie p-ring L from the database and consider the family of ordinary Lie p-rings
that arise from it.

1I LiePRingsInFamily( L, P )

takes as input a generic Lie p-ring L from the database and a prime P and returns all Lie p-rings determined
by L and P up to isomorphism. This function returns fail if the generic Lie p-ring does not exist for the
special prime P ; this may be due to the conditions on the prime or (if P = 3) to the p-class of the Lie p-ring.

gap> L := LiePRingsByLibrary(7)[118];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> LibraryConditions(L);

[ "all x,y, y~-y", "p=1 mod 4" ]

gap> LiePRingsInFamily(L,3);

fail

gap> Length(LiePRingsInFamily(L,5));

15

gap> LiePRingsInFamily(L, 7);

fail

gap> Length(LiePRingsInFamily(L,13));

91

gap> 13^2;

169

The following example shows how to determine all Lie p-rings of dimension 5 and p-class 4 over the prime
29 up to isomorphism.
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gap> L := LiePRingsByLibrary(5);;

gap> L := Filtered(L, x -> PClassOfLiePRing(x)=4);

[ <LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p with parameters [ w ]>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p> ]

gap> K := List(L, x-> LiePRingsInFamily(x, 29));

[ [ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ], fail, fail,

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ], fail, fail,

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ] ]

gap> K := Filtered(Flat(K), x -> x<>fail);

[ <LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29> ]

4.4 More details

Let L be a Lie p-ring from the database. Then the following additional attributes are available.

1I LibraryName(L)

returns a string with the name of L in the database. See p567.pdf for further background.

2I ShortPresentation(L)

returns a string exhibiting a short presentation of L.
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3I LibraryConditions(L)

returns the conditions on L. This is a list of two strings. The first string exhibits the conditions on the
parameters of L, the second shows the conditions on primes.

4I MinimalGeneratorNumberOfLiePRing(L)

returns the minimial generator number of L.

5I PClassOfLiePRing(L)

returns the p-class of L.

gap> L := LiePRingsByLibrary(7)[118];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> LibraryName(L);

"7.118"

gap> LibraryConditions(L);

[ "all x,y, y~-y", "p=1 mod 4" ]

All of the information listed in this section is inherited when L is specialised.

gap> L := LiePRingsByLibrary(7)[118];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> K := SpecialiseLiePRing(L, 5, ParametersOfLiePRing(L), [0,0]);

<LiePRing of dimension 7 over prime 5>

gap> LibraryName(K);

"7.118"

gap> LibraryConditions(K);

[ "all x,y, y~-y", "p=1 mod 4" ]

The following example shows how to find a Lie p-ring with a given name in the database.

gap> L := LiePRingsByLibrary(7);;

gap> Filtered(L, x -> LibraryName(x) = "7.1010")[1];

<LiePRing of dimension 7 over prime p>

4.5 Special functions for dimension 7

The database of Lie p-rings of dimension 7 is very large and it may be time-consuming (or even impossible
due to storage problems) to generate all Lie p-rings of dimension 7 for a given prime P .

Thus there are some special functions available that can be used to access a particular set of Lie p-rings of
dimension 7 only. In particular, it is possible to consider the descendants of a single Lie p-ring of smaller
dimension by itself. The Lie p-rings of this type are all stored in one file of the library. Thus, equivalently,
it is possible to access the Lie p-rings in one single file only.

The table LIE TABLE contains a list of all possible files together with the number of Lie p-rings generated
by their corresponding Lie p-rings.

1I LiePRingsDim7ByFile( nr )

returns the generic Lie p-rings in file number nr .

2I LiePRingsDim7ByFile( nr, P )

returns the isomorphism types of Lie p-rings in file number nr for the prime P .
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gap> LIE_TABLE[100];

[ "3gen/gapdec6.139", 1/2*p+g3+3/2 ]

gap> LiePRingsDim7ByFile(100);

[ <LiePRing of dimension 7 over prime p>,

<LiePRing of dimension 7 over prime p>,

<LiePRing of dimension 7 over prime p with parameters [ w ]>,

<LiePRing of dimension 7 over prime p with parameters [ w ]>,

<LiePRing of dimension 7 over prime p with parameters [ x ]> ]

gap> LiePRingsDim7ByFile(100, 7);

[ <LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7> ]
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