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The number of immediate descendants of algebra 4.1 of order p” is 1361 if p = 3. For p > 3 it is p° + 2p* + 7Tp® +

25p% + 88p + 270 + (p + 4) ged(p — 1,3) + ged(p — 1,4).
If L is an immediate descendant of 4.1 of order p” then L is generated by a,b, ¢, d, Ly has order p3, and Lz = {0}.

1 L abelian

(a,b,c,d|ba,ca,da,cb,db,dc, pd, class 2).

2 L? has order p

If L? has order p then we can assume that L? is generated by ba and that one of the following two sets of commutator
relations hold:

ca = da=cb=db=dc=0,
ca = da=cb=db=0, dc=ba.

There are 7 algebras in the first case, and 4 in the second case.

3 L? has order p?

If L? has order p? then we can assume that one of the following sets of commutator relations holds:

da = cb=db=dc=0,

ca = da=cb=db=0,

da = c¢cb=dc=0,db=ca,

da = ¢b=0,db=ca, dc= wba.

Note that L? is generated by ba, ca in all but the second of these algebras. In the second algebra, L? is generated by ba, dc.
We obtain 2p+ 29 algebras in the first case, (p? —1)/2+4p+ 30 in the second, 3p+ 26 in the third, and (p® —1)/2+2p+6
in the fourth.

In solving the isomorphism problem in Case 4, we have the following presentation:

(a,b,c,d|da,cb,db — ca,dc — wba, pa, pb — xba — yca, pc — zba — tca, class 2),
where ( f ty ) runs over a set of representatives for the equivalence classes of non-singular matrices A under the
equivalence relation given by
-1
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There are (p + 1)?/2 equivalence classes.

There is a MAGMA program in notes4.lcase4.m to compute a set of representative matrices A.



4 L? has order p?

If L? has order p? then L must have the same commutator structure as one of 7.15 — 7.20 from the list of nilpotent Lie
algebras of dimension 7 over Z,, so we can assume that one of the following sets of commutator relations holds:

da = db=dc=0,

ca = da=db=0,

ca = da=dc=0,

ca = da=0,dc=ba,

da = 0,db=ca, dc=cb,
da = 0, db= wca, dc = ba.

In Case 1 we have 3p + 18 algebras.

In Case 2 we have Z'p + 113 4 11p? + 3p3 + 1p? algebras, but you need to add 2 if p = 1mod 3.

In Case 3 we have p? + 3p + 15, but again you need to add 2 if p = 1 mod 3.

In Case 4 we have 3p? + 13p + 31 algebras, but we need to add 2 if p = 1 mod 4 and add 2 if p = 1 mod 3.

In Case 5 we have 550 algebras when p = 3 and

PP+ pt+4p® +6p° +18p+19ifp = 1mod3,
P’ +pt+4p> +6p> +16p+17ifp = 2mod3.

In Case 6 we have %p + 12—3 +3p% + %p‘l + %p?’ algebras.
We need computer programs to sort out the isomorphism problem in Case 5 and in Case 6.

4.1 Case 5

Let L satisfy da = 0, db = ca, dc = cb. It is convenient to replace b by b-+d, so that L satisfies da = cb = 0, db = ca. So L?
is generated by ba, ca and dc, and pL < L?. Tt is fairly easy to see that if o/, b, ¢/, d’ generate L and satisfy d’'a’ = ¢'b' =0,
d't' = ', then (modulo L?)

a = ala+ BAb+ Suc— aud,
b = ~yXa+ 6 b+ duc — yud,
d = qva+dvb+ 66c— ~Ed,
d = —ava— pvb— Béc+ akd

with («, 8) and (v, 0) linearly independant, and with (X, u) and (v, ¢) linearly independant. Furthermore
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So we consider orbits of 4 x 3 matrices A (representing pa, pb, pc, pd) under transformations of the form
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We note that if we multiply «, 5,7, through by a factor k& (in the expression above), and multiply A, u, v, & through by
a factor [, then the image of A is multiplied by a factor k=1/=!. So we can ignore the factor (ad — Bv)~! and still get the
same orbits.
We actually have an action of GL(2, p)x GL(2,p) on the vector space of 4 x 3 matrices, and if we leave out the factor
(ad — By)~ ! (as described above) then the kernel of the action is the subgroup {(kI,kI) |k # 0}, so (in effect) we have a
group of order p? (p — 1)3 (p+ 1)2 acting on a space of order p'2.



If we take p = 0 in the matrices above, then we obtain a subgroup H of the automorphism group of index p+ 1. There
are
f(p) = p® + 2p° + 4p* + 8p® + 15p” + 29p + 27 + (2p + 3) ged(p — 1,3)

orbits of matrices under the action of H, and we can “write down” a set of representatives for these orbits. However for

p = 19 this takes about 3 minutes on my 5 year old linux box, and the representatives take up 4.5 gigabytes of space. So
I save space by not writing all the representatives down in the program to generate orbit representatives under the action
of the full group G.

There is a MAGMA program to compute a set of orbit representatives under the action of the full group G in
notes4.lcaseb.m. The representatives are stored as 4 x 3 matrices over GF(p), which takes up less space than stor-
ing them as integer sequences. We compute a tranversal for the subgroup H in G, and for each of the f(p) H-orbit
representatives A, we compute the images of A under elements of the transversal, and determine how the H-orbits fuse
under the action of G.Thus we have to consider (p + 1) f(p) matrices At where A is an H-orbit representative and ¢ is an
element of the transversal. For each such matrix At we compute the H-orbit representative of At. (This takes a bounded
amount of work involving arithmetic over GF(p).) We index the H-orbits, and we add an H-orbit representative A to
the list of the G-orbit representatives if the index of the H-orbit containing A is greater than or equal to the indexes of
the H-orbits containing the matrices At for ¢ in the transversal. So, if the index of the H-orbit containing At is less than
the index of the H-orbit containing A, then we discard A and there is no need to consider the elements Awu for u in the
remainder of the transversal. This means that we don’t actually have to consider all the elements At. For p = 3 we only
need to consider less than two thirds of the elements At, for p = 5 less than a half, for p = 7 a little over a third, and so
on. Experimentally, it seems that the proportion drops as the prime increases. So the total amount of work needed to
compute a set of representatives for the G-orbits is of order somewhere between p and p”. For p < 23 the time taken for
the program to run is roughly proportional to p®2. However this is a serious bottleneck, and it takes about two hours to
generate the list for p = 19 on my five year old linux box. Note however that 19° = 2476 099, and there is probably only
a limited amount of interesting work you can do with two and half million groups of order 197.

4.2 Case 6

Let L satisfy da = 0, db = wca, dc = ba. Then L? is generated by ba, ca, cb and pL < L2. It is straightforward to show
that all elements in the linear span of a, b, ¢, d have breadth 3, except for those of the form aa + dd. Using this we can
show that if a’,b', ¢/, d’ generate L and satisfy the same commutator relations as a, b, ¢,d then (modulo L?)

ad = oaa+dd,
b = +(\a+yb+whBe+ pd),
d = va+pb+vye+éd,
d = Z(wda+ ad)
and
ba +(ay — wfd) +(waf — wyd) 0 ba
da | = aff — 8 ay — wpBd 0 ca
v/ £(BA =+ wBE —yp) (YA - whp +wyé —wpr) £(3? - wp?) cb
We let
pa
ba
gi =A| ca
d cb

where A is a 4 x 3 matrix over Z,. Then under a change of generating set of the form described above we see that
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where
+(ay — wpd) +(waf — wyod) 0
B= aff —~6 ay —wfd 0
H(BA =W+ wBE —yp) £(YA —wBp+wyE —why) £(3? —wp?)

We note that (a,d) + L? is a characteristic subalgebra, and first investigate the orbits of pa,pd. We consider three
separate cases: pa = pd = 0, pa and pd span a one dimensional subspace, and pa, pd are linearly independent. It turns
out that there are p 4+ 4 orbits of pa, pd. It is quite easy to see that if pa,pd do not span (ba, ca) then we can assume that
pa =pd =0, or pa =0, pd = ca, or pa = 0, pd = ¢b, or pa = ca, pd = cb. There are p orbits where pa, pd span (ba, ca),
and we have a MAGMA program to find them.

4.2.1 pa=pd=0

If pb, pc don’t both lie in (ba, ca) then we can take pb € (ba,ca) and pc ¢ (ba, ca), which mean we need to take 5 = 0. We
can then take pc = ¢b, which means we need to take v = 1 in the 4+ matrices and v = —1 in the — matrices. We can then
take pc = 0 or ca. There are p orbits when pb, pc € (ba, ca), and there is a MAGMA program to find them.

4.2.2 pa=0, pd=-ca

We need § = 0, 8 = 0 in both the plus and minus matrices, and v = 1 in the plus matrices and v = —1 in the minus
matrices. We then have:

0 0 § 0 0 O -
N oy ows o | [ (o — ) (wa = w9) 0\
2 Bl | P i — 70 oy i 0
W 0 0 01 0 (BA = +wBE —ypu) (YA —whp+wyé —whr)  (v* —wp)
0 0 0
| Pt wptwr) Lo+ p—wh—wéw) w
| f@tapta) Ly+E—2A—zbw) 2
0 1 0
0 0 0 0 0 O -
_a)\ y —wh —p w v w —(ay —wpd) —(waB — wyd) 0 !
v B oy & )|y = b~ oy = wfid o
w5 00  —a 01 0 —(BA =+ wBE =) —(YA —wBp+wyé —whr) —(v? —wph)
0 0 0
| rPwp—utwr) (- pt o+ wiw) —w
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0 1 0

We can assume that 0 < w < (p—1)/2. If w # 0 we can assume that u = v = y = 0, that x = 0 or 1, with no
restriction on z.

If w=0and z # 0, we can assume that u =0 or 1, and that v =x =y = 0.

If w=2z=0, we can assume that v =y =0, and that u=0and z =0 or 1, or that u =1l and 0 <z < (p—1)/2.

4.2.3 pa=0,pd=cdb

Weneed § =0, A\ = —fw, p= —v, a =72 — (%w in both plus and minus matrices, giving:
0 0 ¢ 0 0 0 -1
f\Y v wh w v ow (ay — wpo) (waf — wvyd) 0
v B oy € vy 2 af — 6 ay —wBd 0 )
w0 0 00 1 (BA = +wBE —yp) (YA —wBp +wy§ —whr)  (v2 —wp)
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0 0

So we can take w = z = 0, and we can assume that u = 0,1, or the least non-square. (Experimentally only 0 and 1
arise, but I don’t have a proof of this.) There is a MAGMA program to find the orbits of u, v, z, y.
4.2.4 pa = ca, pd = cb

We need § =0, 8 =0 and v = 1 in both the plus and minus matrices. You also need A = —€w, = —v, and a = 1. We
then have:

(;f 3 wB Z 2 11) 2} (ay — wpd) (waf — wyd) 0
v B 4 & vy 2 af — 6 ay —wpé 0 ,
Wi 0 0 00 1 (BA= v +wBE —qyp) (YA —wBp +wyg —whr)  (v2 —wp)
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So you can take v =w=0and 0 <z < (p—1)/2. If £ = 0 you can take 0 < z < (p—1)/2.

4.2.5 pa,pd span (ba,ca)

If pb, pc both lie in (ba, ca), then we can assume that pb = pc = 0, and that pa = ca. There is a MAGMA program to find
the p orbits of pd.

If pb, pc don’t both lie in (ba, ca), then we can assume that pb = 0, and that pc € (ba, ca) + cb though we then need
B =0, and v =1 in the plus matrices and v = —1 in the minus matrices. This gives:
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So we need A =0, u = 0 giving

0 0 ¢ 0 -
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Note that the values of pa and pd depend only on «,d (together with their original values), and that replacing «, §

by ak,dk makes no difference. There is a MAGMA program to compute the orbits of pa, pd under this action. It isn’t
particularly easy to see, but for any fixed values of pa, pd, we can always take x = 0, and y = 0 or 1. Just to make things
tricky, for some fixed pa,pd, © = y = 0 is in the same orbit as x = 0, y = 1, and sometimes it isn’t. There is a MAGMA

program, notes4.1case6.m, to sort this out.
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