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The number of immediate descendants of algebra 4.1 of order p7 is 1361 if p = 3. For p > 3 it is p5 + 2p4 + 7p3 +
25p2 + 88p+ 270 + (p+ 4) gcd(p� 1; 3) + gcd(p� 1; 4).
If L is an immediate descendant of 4.1 of order p7 then L is generated by a; b; c; d, L2 has order p

3, and L3 = f0g.

1 L abelian

ha; b; c; d j ba; ca; da; cb; db; dc; pd; class 2i:

2 L2 has order p

If L2 has order p then we can assume that L2 is generated by ba and that one of the following two sets of commutator
relations hold:

ca = da = cb = db = dc = 0;

ca = da = cb = db = 0; dc = ba:

There are 7 algebras in the �rst case, and 4 in the second case.

3 L2 has order p2

If L2 has order p2 then we can assume that one of the following sets of commutator relations holds:

da = cb = db = dc = 0;

ca = da = cb = db = 0;

da = cb = dc = 0; db = ca;

da = cb = 0; db = ca; dc = !ba:

Note that L2 is generated by ba; ca in all but the second of these algebras. In the second algebra, L2 is generated by ba; dc.
We obtain 2p+29 algebras in the �rst case, (p2�1)=2+4p+30 in the second, 3p+26 in the third, and (p2�1)=2+2p+6
in the fourth.
In solving the isomorphism problem in Case 4, we have the following presentation:

ha; b; c; d j da; cb; db� ca; dc� !ba; pa; pb� xba� yca; pc� zba� tca; class 2i;

where

�
x y
z t

�
runs over a set of representatives for the equivalence classes of non-singular matrices A under the

equivalence relation given by

A � ��1
�
� �
�!� ��

�
A

�
� �
�!� ��

��1
:

There are (p+ 1)2=2 equivalence classes.
There is a Magma program in notes4.1case4.m to compute a set of representative matrices A.
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4 L2 has order p3

If L2 has order p3 then L must have the same commutator structure as one of 7.15 { 7.20 from the list of nilpotent Lie
algebras of dimension 7 over Zp, so we can assume that one of the following sets of commutator relations holds:

da = db = dc = 0;

ca = da = db = 0;

ca = da = dc = 0;

ca = da = 0; dc = ba;

da = 0; db = ca; dc = cb;

da = 0; db = !ca; dc = ba:

In Case 1 we have 3p+ 18 algebras.
In Case 2 we have 77

2 p+
173
2 + 11p2 + 5

2p
3 + 1

2p
4 algebras, but you need to add 2 if p = 1mod 3.

In Case 3 we have p2 + 3p+ 15, but again you need to add 2 if p = 1mod 3.
In Case 4 we have 3p2 + 13p+ 31 algebras, but we need to add 2 if p = 1mod 4 and add 2 if p = 1mod 3.
In Case 5 we have 550 algebras when p = 3 and

p5 + p4 + 4p3 + 6p2 + 18p+ 19 if p = 1mod 3;

p5 + p4 + 4p3 + 6p2 + 16p+ 17 if p = 2mod 3:

In Case 6 we have 9
2p+

13
2 + 3p

2 + 1
2p
4 + 1

2p
3 algebras.

We need computer programs to sort out the isomorphism problem in Case 5 and in Case 6.

4.1 Case 5

Let L satisfy da = 0; db = ca; dc = cb. It is convenient to replace b by b+d, so that L satis�es da = cb = 0, db = ca. So L2

is generated by ba, ca and dc, and pL � L2. It is fairly easy to see that if a0; b0; c0; d0 generate L and satisfy d0a0 = c0b0 = 0,
d0b0 = c0a0, then (modulo L2)

a0 = ��a+ ��b+ ��c� ��d;
b0 = 
�a+ ��b+ ��c� 
�d;
c0 = 
�a+ ��b+ ��c� 
�d;
d0 = ���a� ��b� ��c+ ��d

with (�; �) and (
; �) linearly independant, and with (�; �) and (�; �) linearly independant. Furthermore0@ b0a0

c0a0

d0c0

1A = (�� � �
)

0@ �2 2�� �2

�� �� + �� ��

�2 2�� �2

1A0@ ba
ca
dc

1A :
So we consider orbits of 4� 3 matrices A (representing pa; pb; pc; pd) under transformations of the form

A 7�! (�� � �
)�1

0BB@
�� �� �� ���

� �� �� �
�

� �� �� �
�
��� ��� ��� ��

1CCAA
0@ �2 2�� �2

�� �� + �� ��

�2 2�� �2

1A�1

:

We note that if we multiply �; �; 
; � through by a factor k (in the expression above), and multiply �; �; �; � through by
a factor l, then the image of A is multiplied by a factor k�1l�1. So we can ignore the factor (��� �
)�1 and still get the
same orbits.
We actually have an action of GL(2; p)�GL(2; p) on the vector space of 4� 3 matrices, and if we leave out the factor

(�� � �
)�1 (as described above) then the kernel of the action is the subgroup f(kI; kI) j k 6= 0g, so (in e�ect) we have a
group of order p2 (p� 1)3 (p+ 1)2 acting on a space of order p12.
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If we take � = 0 in the matrices above, then we obtain a subgroup H of the automorphism group of index p+1. There
are

f(p) = p6 + 2p5 + 4p4 + 8p3 + 15p2 + 29p+ 27 + (2p+ 3) gcd(p� 1; 3)

orbits of matrices under the action of H, and we can \write down" a set of representatives for these orbits. However for
p = 19 this takes about 3 minutes on my 5 year old linux box, and the representatives take up 4.5 gigabytes of space. So
I save space by not writing all the representatives down in the program to generate orbit representatives under the action
of the full group G.
There is a Magma program to compute a set of orbit representatives under the action of the full group G in

notes4.1case5.m. The representatives are stored as 4 � 3 matrices over GF(p), which takes up less space than stor-
ing them as integer sequences. We compute a tranversal for the subgroup H in G, and for each of the f(p) H-orbit
representatives A, we compute the images of A under elements of the transversal, and determine how the H-orbits fuse
under the action of G.Thus we have to consider (p+ 1)f(p) matrices At where A is an H-orbit representative and t is an
element of the transversal. For each such matrix At we compute the H-orbit representative of At. (This takes a bounded
amount of work involving arithmetic over GF(p).) We index the H-orbits, and we add an H-orbit representative A to
the list of the G-orbit representatives if the index of the H-orbit containing A is greater than or equal to the indexes of
the H-orbits containing the matrices At for t in the transversal. So, if the index of the H-orbit containing At is less than
the index of the H-orbit containing A, then we discard A and there is no need to consider the elements Au for u in the
remainder of the transversal. This means that we don't actually have to consider all the elements At. For p = 3 we only
need to consider less than two thirds of the elements At, for p = 5 less than a half, for p = 7 a little over a third, and so
on. Experimentally, it seems that the proportion drops as the prime increases. So the total amount of work needed to
compute a set of representatives for the G-orbits is of order somewhere between p6 and p7. For p � 23 the time taken for
the program to run is roughly proportional to p6:2. However this is a serious bottleneck, and it takes about two hours to
generate the list for p = 19 on my �ve year old linux box. Note however that 195 = 2476 099, and there is probably only
a limited amount of interesting work you can do with two and half million groups of order 197.

4.2 Case 6

Let L satisfy da = 0; db = !ca; dc = ba. Then L2 is generated by ba, ca, cb and pL � L2. It is straightforward to show
that all elements in the linear span of a; b; c; d have breadth 3, except for those of the form �a + �d. Using this we can
show that if a0; b0; c0; d0 generate L and satisfy the same commutator relations as a; b; c; d then (modulo L2)

a0 = �a+ �d;

b0 = �(�a+ 
b+ !�c+ �d);
c0 = �a+ �b+ 
c+ �d;

d0 = �(!�a+ �d)

and 0@ b0a0

c0a0

c0b0

1A =

0@ �(�
 � !��) �(!�� � !
�) 0
�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A0@ ba
ca
cb

1A :
We let 0BB@

pa
pb
pc
pd

1CCA = A

0@ ba
ca
cb

1A
where A is a 4� 3 matrix over Zp. Then under a change of generating set of the form described above we see that

A 7!

0BB@
� 0 0 �
�� �
 �!� ��
� � 
 �
�!� 0 0 ��

1CCAAB�1;
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where

B =

0@ �(�
 � !��) �(!�� � !
�) 0
�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A :
We note that ha; di + L2 is a characteristic subalgebra, and �rst investigate the orbits of pa; pd. We consider three

separate cases: pa = pd = 0, pa and pd span a one dimensional subspace, and pa; pd are linearly independent. It turns
out that there are p+4 orbits of pa; pd. It is quite easy to see that if pa; pd do not span hba; cai then we can assume that
pa = pd = 0, or pa = 0, pd = ca, or pa = 0, pd = cb, or pa = ca, pd = cb. There are p orbits where pa; pd span hba; cai,
and we have a Magma program to �nd them.

4.2.1 pa = pd = 0

If pb; pc don't both lie in hba; cai then we can take pb 2 hba; cai and pc =2 hba; cai, which mean we need to take � = 0. We
can then take pc = cb, which means we need to take 
 = 1 in the + matrices and 
 = �1 in the � matrices. We can then
take pc = 0 or ca. There are p orbits when pb; pc 2 hba; cai, and there is a Magma program to �nd them.

4.2.2 pa = 0, pd = ca

We need � = 0, � = 0 in both the plus and minus matrices, and 
 = 1 in the plus matrices and 
 = �1 in the minus
matrices. We then have:

0BB@
� 0 0 �
� 
 !� �
� � 
 �
!� 0 0 �

1CCA
0BB@
0 0 0
u v w
x y z
0 1 0

1CCA
0@ (�
 � !��) (!�� � !
�) 0

�� � 
� �
 � !�� 0

(��� 
� + !�� � 
�) (
�� !��+ !
� � !��) (
2 � !�2)

1A�1

=

0BB@
0 0 0

1
� (u+ w�+ w�)

1
� (v + �� w�� w�!) w

1
� (x+ z�+ z�)

1
� (y + � � z�� z�!) z

0 1 0

1CCA
0BB@

� 0 0 �
�� �
 �!� ��
� � 
 �
�!� 0 0 ��

1CCA
0BB@
0 0 0
u v w
x y z
0 1 0

1CCA
0@ �(�
 � !��) �(!�� � !
�) 0

�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A�1

=

0BB@
0 0 0

� 1
� (w�� u+ w�) � 1

� (v � �+ w�+ w�!) �w
1
� (z�� x+ z�)

1
� (y � � + z�+ z�!) z

0 1 0

1CCA
We can assume that 0 � w � (p � 1)=2. If w 6= 0 we can assume that u = v = y = 0, that x = 0 or 1, with no

restriction on z.
If w = 0 and z 6= 0, we can assume that u = 0 or 1, and that v = x = y = 0.
If w = z = 0, we can assume that v = y = 0, and that u = 0 and x = 0 or 1, or that u = 1 and 0 � x � (p� 1)=2.

4.2.3 pa = 0, pd = cb

We need � = 0, � = ��!, � = ��, � = 
2 � �2! in both plus and minus matrices, giving:0BB@
� 0 0 �
� 
 !� �
� � 
 �
!� 0 0 �

1CCA
0BB@
0 0 0
u v w
x y z
0 0 1

1CCA
0@ (�
 � !��) (!�� � !
�) 0

�� � 
� �
 � !�� 0

(��� 
� + !�� � 
�) (
�� !��+ !
� � !��) (
2 � !�2)

1A�1
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=

0BBB@
0 0 0

1
(
2��2!)2

�
u
2 � v�
 � y�2! + x�
!

�
1

(
2��2!)2
�
v
2 � x�2!2 � u�
! + y�
!

�
1


2��2! (w
 � � + z�!)
� 1
(
2��2!)2

�
v�2 � x
2 � u�
 + y�


�
1

(
2��2!)2
�
y
2 + v�
 � u�2! � x�
!

�
1


2��2! (� + w� + z
)

0 0 1

1CCCA
0BB@

� 0 0 �
�� �
 �!� ��
� � 
 �
�!� 0 0 ��

1CCA
0BB@
0 0 0
u v w
x y z
0 0 1

1CCA
0@ �(�
 � !��) �(!�� � !
�) 0

�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A�1

=

0BBB@
0 0 0

1
(
2��2!)2

�
u
2 � v�
 � y�2! + x�
!

�
� 1
(
2��2!)2

�
v
2 � x�2!2 � u�
! + y�
!

�
1


2��2! (w
 � � + z�!)
1

(
2��2!)2
�
v�2 � x
2 � u�
 + y�


�
1

(
2��2!)2
�
y
2 + v�
 � u�2! � x�
!

�
� 1

2��2! (� + w� + z
)

0 0 1

1CCCA
So we can take w = z = 0, and we can assume that u = 0; 1, or the least non-square. (Experimentally only 0 and 1

arise, but I don't have a proof of this.) There is a Magma program to �nd the orbits of u; v; x; y.

4.2.4 pa = ca, pd = cb

We need � = 0, � = 0 and 
 = 1 in both the plus and minus matrices. You also need � = ��!, � = ��, and � = 1. We
then have:

0BB@
� 0 0 �
� 
 !� �
� � 
 �
!� 0 0 �

1CCA
0BB@
0 1 0
u v w
x y z
0 0 1

1CCA
0@ (�
 � !��) (!�� � !
�) 0

�� � 
� �
 � !�� 0

(��� 
� + !�� � 
�) (
�� !��+ !
� � !��) (
2 � !�2)

1A�1

=

0BB@
0 1 0
u v � �! w � �
x y + � z + �
0 0 1

1CCA
0BB@

� 0 0 �
�� �
 �!� ��
� � 
 �
�!� 0 0 ��

1CCA
0BB@
0 1 0
u v w
x y z
0 0 1

1CCA
0@ �(�
 � !��) �(!�� � !
�) 0

�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A�1

=

0BB@
0 1 0
u �! � v w � �
�x y + � �z � �
0 0 1

1CCA
So you can take v = w = 0 and 0 � x � (p� 1)=2. If x = 0 you can take 0 � z � (p� 1)=2.

4.2.5 pa; pd span hba; cai

If pb; pc both lie in hba; cai, then we can assume that pb = pc = 0, and that pa = ca. There is a Magma program to �nd
the p orbits of pd.
If pb; pc don't both lie in hba; cai, then we can assume that pb = 0, and that pc 2 hba; cai + cb though we then need

� = 0, and 
 = 1 in the plus matrices and 
 = �1 in the minus matrices. This gives:
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0BB@
� 0 0 �
� 
 !� �
� � 
 �
!� 0 0 �

1CCA
0BB@
u v 0
0 0 0
x y 1
p q 0

1CCA
0@ (�
 � !��) (!�� � !
�) 0

�� � 
� �
 � !�� 0

(��� 
� + !�� � 
�) (
�� !��+ !
� � !��) (
2 � !�2)

1A�1

=

0BBB@
1

�2��2!
�
q�2 + u�2 + p�� + v��

�
1

�2��2!
�
v�2 + q�� + p�2! + u��!

�
0

1
�2��2! (p��+ q�� + u��+ v��)

1
�2��2! (q��+ v��+ p��! + u��!) 0

1
�2��2! (x�+ y� + ��+ �� � �� + p�� + q�� + u�� + v�� � ��!)

1
�2��2! (y�� ��+ q�� + v�� + x�! � ��! + ��! + ��! + p��! + u��!) 1

1
�2��2!

�
p�2 + q�� + v�2! + u��!

�
1

�2��2!
�
q�2 + u�2!2 + p��! + v��!

�
0

1CCCA
0BB@

� 0 0 �
�� �
 �!� ��
� � 
 �
�!� 0 0 ��

1CCA
0BB@
u v 0
0 0 0
x y 1
p q 0

1CCA
0@ �(�
 � !��) �(!�� � !
�) 0

�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A�1

0BBB@
1

�2��2!
�
q�2 + u�2 + p�� + v��

�
� 1
�2��2!

�
v�2 + q�� + p�2! + u��!

�
0

� 1
�2��2! (p��+ q�� + u��+ v��)

1
�2��2! (q��+ v��+ p��! + u��!) 0

1
�2��2! (��� y� � x�+ �� � �� + p�� + q�� + u�� + v�� � ��!) � 1

�2��2! (q�� � ��� y�+ v�� � x�! � ��! + ��! + ��! + p��! + u��!) 1

� 1
�2��2!

�
p�2 + q�� + v�2! + u��!

�
1

�2��2!
�
q�2 + u�2!2 + p��! + v��!

�
0

1CCCA
So we need � = 0, � = 0 giving

0BB@
� 0 0 �
� 
 !� �
� � 
 �
!� 0 0 �

1CCA
0BB@
u v 0
0 0 0
x y 1
p q 0

1CCA
0@ (�
 � !��) (!�� � !
�) 0

�� � 
� �
 � !�� 0

(��� 
� + !�� � 
�) (
�� !��+ !
� � !��) (
2 � !�2)

1A�1

=

0BB@
1

�2��2!
�
q�2 + u�2 + p�� + v��

�
1

�2��2!
�
v�2 + q�� + p�2! + u��!

�
0

0 0 0
1

�2��2! (x�+ y� + �� + p�� + q�� + u�� + v�� � ��!)
1

�2��2! (y�+ q�� + v�� + x�! � ��! + ��! + p��! + u��!) 1
1

�2��2!
�
p�2 + q�� + v�2! + u��!

�
1

�2��2!
�
q�2 + u�2!2 + p��! + v��!

�
0

1CCA
0BB@

� 0 0 �
�� �
 �!� ��
� � 
 �
�!� 0 0 ��

1CCA
0BB@
u v 0
0 0 0
x y 1
p q 0

1CCA
0@ �(�
 � !��) �(!�� � !
�) 0

�� � 
� �
 � !�� 0

�(��� 
� + !�� � 
�) �(
�� !��+ !
� � !��) �(
2 � !�2)

1A�1

=

0BB@
1

�2��2!
�
q�2 + u�2 + p�� + v��

�
� 1
�2��2!

�
v�2 + q�� + p�2! + u��!

�
0

0 0 0
1

�2��2! (�� � y� � x�+ p�� + q�� + u�� + v�� � ��!) � 1
�2��2! (q�� � y�+ v�� � x�! � ��! + ��! + p��! + u��!) 1

� 1
�2��2!

�
p�2 + q�� + v�2! + u��!

�
1

�2��2!
�
q�2 + u�2!2 + p��! + v��!

�
0

1CCA
Note that the values of pa and pd depend only on �; � (together with their original values), and that replacing �; �

by �k; �k makes no di�erence. There is a Magma program to compute the orbits of pa; pd under this action. It isn't
particularly easy to see, but for any �xed values of pa; pd, we can always take x = 0, and y = 0 or 1. Just to make things
tricky, for some �xed pa; pd, x = y = 0 is in the same orbit as x = 0, y = 1, and sometimes it isn't. There is a Magma
program, notes4.1case6.m, to sort this out.
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