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The following occurs in computing the immediate descendants of order p” of al-
gebra 5.1. There are 6 commutator structures possible with L? having order p?, and
this problem arises in Case 6, with pL = L?. Here pa = pd = 0, and we write
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for a 3 X 2 matrix A. We consider the orbits of matrices
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where (tz — zy)? — (uz — vt)(uz — vy) is not a square under the action of non-singular
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Each such orbit contains a matrix with 4 = 0 and v = 1, and we pick one matrix
of this form out of each orbit, giving k algebras

(a,b,c,d, e|da,ea,ch,db—ca,eb,dc, ec, ed—ba, pa, pb—ca, pc—tba—xca, pd, pe—yba—zca, class 2),
where k = 4 when p = 3, k = (p? — 1)/2 when p = 1mod 3, and k = (p? + 1)/2 when

p = 2mod 3.
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First we consider the action of four particular matrices
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From (1) we see that we can take u = 0 provided t # 0, and from (2) and (4) we
see that we can take v = 0 provided z # 0, and then swap u and v to get u = 0.
In the case when t = z = 0 and both u and v are non-zero we can use (4) to take
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x =y =1. (None of the rows of | ¢t =z | can equal zero.)
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Now consider the action of < @ ¢
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This proves that every orbit contains a matrix with first row (0, 1).
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Now in a matrix | ¢ =z |, the condition “(tz — xy)? — (ux — vt)(uz — vy) is
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not a square” reduces to “(tz — xy)? — ty is not a square”, so neither ¢ nor y can be
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zero. The action of ( 01 ) on | t x | gives ;—2 2 |, and so every orbit
Yy z Yy za

contains a matrix where ¢ is either one or the least non-square modulo p,
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where 0 < x < p%l, and where when z = 0, 0 < 2z < p%l. It seems experimentally

that every orbit contains a matrix with « = 0, v =t = 1, but I have no proof of this.

Next we show that if we have (u,v,t, z,y, z) satisfying these conditions, and if we
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acton | t x | with a non-identity matrix ( b od ), then we obtain | ¢ 2
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where (u/,v',t', 2, y, 2') which is lexicographically higher than (u,v,t,z,y,2). The
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which is lexicographically higher unless b =0 and d = 1. But when b =0 and d =1,
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then the action gives a% £ |, which is lexicographically higher unless a = 1.
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So we only need to consider the action of matrices < Z 2 ) where ¢ # 0, and we
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write such a matrix as k ( Z d
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a(2z — 2dy — d) + b(2td*> — 1 — 2xd) b (2ya — 2tbd) + a (b — 2za + ad + 2xbd)

So we need a(2z — 2dy — d) + b(2td*> — 1 — 2xd) = 0 and we want to take
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5 (b(2ya — 2tbd) + a (b — 2za + ad + 2xbd)) .
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The MAGMA program note2dech.1l.m finds a set of representatives for the orbits.
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The integer parameters ¢, z, y, z correspond to t1,x1,y1, z1 in GF(p).



