Module Lacaml__Z.Vec

module Vec: sig .. end

type t = Lacaml__Z.vec 
Vector operations
Creation of vectors
val random : ?rnd_state:Stdlib.Random.State.t ->
?re_from:float ->
?re_range:float -> ?im_from:float -> ?im_range:float -> int -> Lacaml__Z.vec

random ?rnd_state ?re_from ?re_range ?im_from ?im_range n

rnd_state : default = Random.get_state ()
re_from : default = -1.0
re_range : default = 2.0
im_from : default = -1.0
im_range : default = 2.0
type unop = ?n:int ->
?ofsy:int ->
?incy:int ->
?y:Lacaml__Z.vec -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Lacaml__Z.vec
type binop = ?n:int ->
?ofsz:int ->
?incz:int ->
?z:Lacaml__Z.vec ->
?ofsx:int ->
?incx:int ->
Lacaml__Z.vec -> ?ofsy:int -> ?incy:int -> Lacaml__Z.vec -> Lacaml__Z.vec
Creation/conversion of vectors and dimension accessor
val create : int -> Lacaml__Z.vec

create n

val make : int -> Stdlib.Complex.t -> Lacaml__Z.vec

make n x

val make0 : int -> Lacaml__Z.vec

make0 n x

val init : int -> (int -> Stdlib.Complex.t) -> Lacaml__Z.vec

init n f

val of_array : Stdlib.Complex.t array -> Lacaml__Z.vec

of_array ar

val to_array : Lacaml__Z.vec -> Stdlib.Complex.t array

to_array v

val of_list : Stdlib.Complex.t list -> Lacaml__Z.vec

of_list l

val to_list : Lacaml__Z.vec -> Stdlib.Complex.t list

to_list v

val append : Lacaml__Z.vec -> Lacaml__Z.vec -> Lacaml__Z.vec

append v1 v2

val concat : Lacaml__Z.vec list -> Lacaml__Z.vec

concat vs

val empty : Lacaml__Z.vec

empty, the empty vector.

val linspace : ?y:Lacaml__Z.vec ->
Stdlib.Complex.t -> Stdlib.Complex.t -> int -> Lacaml__Z.vec

linspace ?z a b n

y : default = fresh vector of dim n
val logspace : ?y:Lacaml__Z.vec ->
Stdlib.Complex.t -> Stdlib.Complex.t -> ?base:float -> int -> Lacaml__Z.vec

logspace ?z a b base n

y : default = fresh vector of dim n
base : default = 10.0
val dim : Lacaml__Z.vec -> int

dim x

val has_zero_dim : Lacaml__Z.vec -> bool

has_zero_dim vec checks whether vector vec has a dimension of size zero. In this case it cannot contain data.

Iterators over vectors
val map : (Stdlib.Complex.t -> Stdlib.Complex.t) ->
?n:int ->
?ofsy:int ->
?incy:int ->
?y:Lacaml__Z.vec -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Lacaml__Z.vec

map f ?n ?ofsx ?incx x

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
y : default = new vector with ofsy+(n-1)(abs incy) rows
ofsx : default = 1
incx : default = 1
val iter : (Stdlib.Complex.t -> unit) ->
?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> unit

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val iteri : (int -> Stdlib.Complex.t -> unit) ->
?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> unit

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

val fold : ('a -> Stdlib.Complex.t -> 'a) ->
'a -> ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> 'a

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
Operations on one vector
val rev : Lacaml__Z.vec -> Lacaml__Z.vec

rev x reverses vector x (non-destructive).

val max : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Stdlib.Complex.t

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps. NaNs are ignored. If only NaNs are encountered, the negative infinity value will be returned.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val min : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Stdlib.Complex.t

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps. NaNs are ignored. If only NaNs are encountered, the infinity value will be returned.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val sort : ?cmp:(Stdlib.Complex.t -> Stdlib.Complex.t -> int) ->
?decr:bool ->
?n:int ->
?ofsp:int ->
?incp:int ->
?p:Lacaml__common.int_vec -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> unit

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

cmp : a function such that cmp a b < 0 if a is less than b, cmp a b = 0 if a equal b and cmp a b > 0 if a is greater than b for the desired order. Default: the usual order on floating point values or the lexicographic order on complex ones (a special routine makes it fast). Whatever the order you choose, NaNs (in any component for complex numbers) are considered larger than any other value (so they will be last, in no specified order, in the sorted vector). Therefore, NaN are never passed to cmp.
decr : sort in decreasing order (stays fast for the default cmp).
n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsp : default = 1
incp : default = 1
p : if you pass a vector of size ofsp+(n - 1)(abs incp), the vector x will be unchanged and the permutation to sort it will be stored in p. Thus x.{p.{ofsp + (i-1) * incp}} will give the elements of x in increasing order. Default: no vector is provided.
ofsx : default = 1
incx : default = 1
val fill : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Stdlib.Complex.t -> unit

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val sum : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Stdlib.Complex.t

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val prod : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Stdlib.Complex.t

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val add_const : Stdlib.Complex.t -> unop

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively. If y is given, the result will be stored in there using increments of incy, otherwise a fresh vector will be used. The resulting vector is returned.

val sqr_nrm2 : ?stable:bool -> ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> float

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps. If stable is true, this is equivalent to squaring the result of calling the BLAS-function nrm2, which avoids over- and underflow if possible. If stable is false (default), dot will be called instead for greatly improved performance.

stable : default = false
n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
val ssqr : ?n:int ->
?c:Stdlib.Complex.t ->
?ofsx:int -> ?incx:int -> Lacaml__Z.vec -> Stdlib.Complex.t

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps. Please do not confuse with Lacaml__Z.Vec.sqr_nrm2! The current function behaves differently with complex numbers when zero is passed in for c. It computes the square for each entry then, whereas Lacaml__Z.Vec.sqr_nrm2 uses the conjugate transpose in the product. The latter will therefore always return a real number.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
c : default = zero
ofsx : default = 1
incx : default = 1
val neg : unop

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps. If y is given, the result will be stored in there using increments of incy, otherwise a fresh vector will be used. The resulting vector is returned.

val reci : unop

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps. If y is given, the result will be stored in there using increments of incy, otherwise a fresh vector will be used. The resulting vector is returned.

Operations on two vectors
val add : binop

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

val sub : binop

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

val mul : binop

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

val div : binop

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

val zpxy : ?n:int ->
?ofsz:int ->
?incz:int ->
Lacaml__Z.vec ->
?ofsx:int ->
?incx:int -> Lacaml__Z.vec -> ?ofsy:int -> ?incy:int -> Lacaml__Z.vec -> unit

zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z. This function is useful for convolutions.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsz : default = 1
incz : default = 1
ofsx : default = 1
incx : default = 1
ofsy : default = 1
incy : default = 1
val zmxy : ?n:int ->
?ofsz:int ->
?incz:int ->
Lacaml__Z.vec ->
?ofsx:int ->
?incx:int -> Lacaml__Z.vec -> ?ofsy:int -> ?incy:int -> Lacaml__Z.vec -> unit

zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z. This function is useful for convolutions.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsz : default = 1
incz : default = 1
ofsx : default = 1
incx : default = 1
ofsy : default = 1
incy : default = 1
val ssqr_diff : ?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml__Z.vec -> ?ofsy:int -> ?incy:int -> Lacaml__Z.vec -> Stdlib.Complex.t

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

n : default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x
ofsx : default = 1
incx : default = 1
ofsy : default = 1
incy : default = 1