Index of values

A
a_str [Lacaml__utils]
ab_str [Lacaml__utils]
abs [Lacaml__S.Mat]

abs ?m ?n ?br ?bc ?b ?ar ?ac a computes the absolute value of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

abs [Lacaml__S.Vec]

abs ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the absolute value of n elements of the vector x using incx as incremental steps.

abs [Lacaml__D.Mat]

abs ?m ?n ?br ?bc ?b ?ar ?ac a computes the absolute value of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

abs [Lacaml__D.Vec]

abs ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the absolute value of n elements of the vector x using incx as incremental steps.

acos [Lacaml__S.Mat]

acos ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

acos [Lacaml__S.Vec]

acos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc cosine of n elements of the vector x using incx as incremental steps.

acos [Lacaml__D.Mat]

acos ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

acos [Lacaml__D.Vec]

acos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc cosine of n elements of the vector x using incx as incremental steps.

acosh [Lacaml__S.Mat]

acosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

acosh [Lacaml__S.Vec]

cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc cosine of n elements of the vector x using incx as incremental steps.

acosh [Lacaml__D.Mat]

acosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

acosh [Lacaml__D.Vec]

cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc cosine of n elements of the vector x using incx as incremental steps.

add [Lacaml__C.Mat]

add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

add [Lacaml__C.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add [Lacaml__Z.Mat]

add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

add [Lacaml__Z.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add [Lacaml__S.Mat]

add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

add [Lacaml__S.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add [Lacaml__D.Mat]

add ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the sum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

add [Lacaml__D.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add_const [Lacaml__C.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml__C.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

add_const [Lacaml__Z.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml__Z.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

add_const [Lacaml__S.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml__S.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

add_const [Lacaml__D.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml__D.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

alphas_str [Lacaml__utils]
amax [Lacaml__C]

amax ?n ?ofsx ?incx x

amax [Lacaml__Z]

amax ?n ?ofsx ?incx x

amax [Lacaml__S]

amax ?n ?ofsx ?incx x

amax [Lacaml__D]

amax ?n ?ofsx ?incx x

ap_str [Lacaml__utils]
append [Lacaml__C.Vec]

append v1 v2

append [Lacaml__Z.Vec]

append v1 v2

append [Lacaml__S.Vec]

append v1 v2

append [Lacaml__D.Vec]

append v1 v2

as_vec [Lacaml__C.Mat]

as_vec mat

as_vec [Lacaml__Z.Mat]

as_vec mat

as_vec [Lacaml__S.Mat]

as_vec mat

as_vec [Lacaml__D.Mat]

as_vec mat

asin [Lacaml__S.Mat]

asin ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

asin [Lacaml__S.Vec]

asin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc sine of n elements of the vector x using incx as incremental steps.

asin [Lacaml__D.Mat]

asin ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

asin [Lacaml__D.Vec]

asin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc sine of n elements of the vector x using incx as incremental steps.

asinh [Lacaml__S.Mat]

asinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

asinh [Lacaml__S.Vec]

asinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc sine of n elements of the vector x using incx as incremental steps.

asinh [Lacaml__D.Mat]

asinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

asinh [Lacaml__D.Vec]

asinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc sine of n elements of the vector x using incx as incremental steps.

asum [Lacaml__S]

asum ?n ?ofsx ?incx x see BLAS documentation!

asum [Lacaml__D]

asum ?n ?ofsx ?incx x see BLAS documentation!

atan [Lacaml__S.Mat]

atan ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

atan [Lacaml__S.Vec]

atan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc tangent of n elements of the vector x using incx as incremental steps.

atan [Lacaml__D.Mat]

atan ?m ?n ?br ?bc ?b ?ar ?ac a computes the arc tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

atan [Lacaml__D.Vec]

atan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the arc tangent of n elements of the vector x using incx as incremental steps.

atan2 [Lacaml__S.Mat]

atan2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes atan2(a, b) for the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

atan2 [Lacaml__S.Vec]

atan2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes atan2(x, y) of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

atan2 [Lacaml__D.Mat]

atan2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes atan2(a, b) for the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

atan2 [Lacaml__D.Vec]

atan2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes atan2(x, y) of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

atanh [Lacaml__S.Mat]

atanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

atanh [Lacaml__S.Vec]

atanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc tangent of n elements of the vector x using incx as incremental steps.

atanh [Lacaml__D.Mat]

atanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic arc tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

atanh [Lacaml__D.Vec]

atanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic arc tangent of n elements of the vector x using incx as incremental steps.

axpy [Lacaml__C.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml__C]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

axpy [Lacaml__Z.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml__Z]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

axpy [Lacaml__S.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml__S]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

axpy [Lacaml__D.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml__D]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

B
b_str [Lacaml__utils]
bad_inc [Lacaml__utils]

bad_inc inc

bad_n [Lacaml__utils]

bad_n ~n ~max_n

bad_ofs [Lacaml__utils]

bad_ofs ~ofs ~max_ofs

bc_str [Lacaml__utils]
br_str [Lacaml__utils]
C
c_str [Lacaml__utils]
calc_mat_max_cols [Lacaml__utils]

calc_mat_max_cols ~dim2 ~c

calc_mat_max_rows [Lacaml__utils]

calc_mat_max_rows ~dim1 ~r

calc_mat_opt_max_cols [Lacaml__utils]

calc_mat_opt_max_cols ?c dim1

calc_mat_opt_max_rows [Lacaml__utils]

calc_mat_opt_max_rows ?r dim1

calc_unpacked_dim [Lacaml__utils]
calc_vec_max_n [Lacaml__utils]

calc_vec_max_n ~dim ~ofs ~inc

calc_vec_min_dim [Lacaml__utils]

calc_vec_min_dim ~n ~ofs ~inc

calc_vec_opt_max_n [Lacaml__utils]

calc_vec_opt_max_n ?ofs ?inc dim

cbrt [Lacaml__S.Mat]

cbrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the cubic root of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

cbrt [Lacaml__S.Vec]

cbrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cubic root of n elements of the vector x using incx as incremental steps.

cbrt [Lacaml__D.Mat]

cbrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the cubic root of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

cbrt [Lacaml__D.Vec]

cbrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cubic root of n elements of the vector x using incx as incremental steps.

cc_str [Lacaml__utils]
ceil [Lacaml__S.Mat]

ceil ?m ?n ?br ?bc ?b ?ar ?ac a computes the ceiling of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

ceil [Lacaml__S.Vec]

ceil ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the ceiling of n elements of the vector x using incx as incremental steps.

ceil [Lacaml__D.Mat]

ceil ?m ?n ?br ?bc ?b ?ar ?ac a computes the ceiling of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

ceil [Lacaml__D.Vec]

ceil ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the ceiling of n elements of the vector x using incx as incremental steps.

check_dim1_mat [Lacaml__utils]
check_dim2_mat [Lacaml__utils]
check_dim_mat [Lacaml__utils]
check_mat_c [Lacaml__utils]

check_mat_c ~loc ~vec_name ~c ~max_c checks whether matrix column offset c for vector of name vec_name is invalid (i.e.

check_mat_cols [Lacaml__utils]

check_mat_cols ~loc ~mat_name ~dim2 ~c ~p ~param_name checks the matrix column operation length in parameter p with name param_name at location loc for matrix with name mat_name and dimension dim2 given the operation column c.

check_mat_empty [Lacaml__utils]
check_mat_m [Lacaml__utils]

check_mat_m ~loc ~mat_name ~dim1 ~r ~m checks the matrix row operation length in parameter m at location loc for matrix with name mat_name and dimension dim1 given the operation row r.

check_mat_min_dim1 [Lacaml__utils]

check_mat_min_dim1 ~loc ~mat_name ~dim1 ~min_dim1 checks the minimum row dimension min_dim1 of a matrix with name mat_name at location loc given its row dimension dim1.

check_mat_min_dim2 [Lacaml__utils]

check_mat_min_dim2 ~loc ~mat_name ~dim2 ~min_dim2 checks the minimum column dimension min_dim2 of a matrix with name mat_name at location loc given its column dimension dim2.

check_mat_min_dims [Lacaml__utils]

check_mat_min_dim2 ~loc ~mat_name ~dim2 ~min_dim2 checks the minimum column dimension min_dim2 of a matrix with name mat_name at location loc given its column dimension dim2.

check_mat_mn [Lacaml__utils]

check_mat_mn ~loc ~mat_name ~dim1 ~dim2 ~r ~c ~m ~n checks the matrix operation lengths in parameters m and n at location loc for matrix with name mat_name and dimensions dim1 and dim2 given the operation row r and column c.

check_mat_n [Lacaml__utils]

check_mat_n ~loc ~mat_name ~dim2 ~c ~n checks the matrix column operation length in parameter n at location loc for matrix with name mat_name and dimension dim2 given the operation column c.

check_mat_r [Lacaml__utils]

check_mat_r ~loc ~vec_name ~r ~max_r checks whether matrix row offset r for vector of name vec_name is invalid (i.e.

check_mat_rows [Lacaml__utils]

check_mat_rows ~loc ~mat_name ~dim1 ~r ~p ~param_name checks the matrix row operation length in parameter p with name param_name at location loc for matrix with name mat_name and dimension dim1 given the operation row r.

check_mat_square [Lacaml__utils]
check_var_lt0 [Lacaml__utils]

check_var_lt0 ~loc ~name var checks whether integer variable var with name name at location loc is lower than 0.

check_var_within [Lacaml__utils]
check_vec [Lacaml__utils]
check_vec_dim [Lacaml__utils]

check_vec_dim ~loc ~vec_name ~dim ~ofs ~inc ~n_name ~n checks the vector operation length in parameter n with name n_name at location loc for vector with name vec_name and dimension dim given the operation offset ofs and increment inc.

check_vec_empty [Lacaml__utils]
check_vec_inc [Lacaml__utils]

check_vec_inc ~loc ~vec_name inc checks whether vector increment inc for vector of name vec_name is invalid (i.e.

check_vec_is_perm [Lacaml__utils]

check_vec_is_perm loc vec_name vec n checks whether vec is a valid permutation vector.

check_vec_min_dim [Lacaml__utils]

check_vec_min_dim ~loc ~vec_name ~dim ~min_dim checks whether vector with name vec_name and dimension dim satisfies minimum dimension min_dim.

check_vec_ofs [Lacaml__utils]

check_vec_ofs ~loc ~vec_name ~ofs ~max_ofs checks whether vector offset ofs for vector of name vec_name is invalid (i.e.

cmab [Lacaml__S.Mat]

cmab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m-by-n range of elements of matrices a and b elementwise, and subtracts the result from and stores it in the specified range in c.

cmab [Lacaml__D.Mat]

cmab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m-by-n range of elements of matrices a and b elementwise, and subtracts the result from and stores it in the specified range in c.

col [Lacaml__C.Mat]

col m n

col [Lacaml__Z.Mat]

col m n

col [Lacaml__S.Mat]

col m n

col [Lacaml__D.Mat]

col m n

concat [Lacaml__C.Vec]

concat vs

concat [Lacaml__Z.Vec]

concat vs

concat [Lacaml__S.Vec]

concat vs

concat [Lacaml__D.Vec]

concat vs

copy [Lacaml__C]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy [Lacaml__Z]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy [Lacaml__S]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy [Lacaml__D]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy_diag [Lacaml__C.Mat]

copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a

copy_diag [Lacaml__Z.Mat]

copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a

copy_diag [Lacaml__S.Mat]

copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a

copy_diag [Lacaml__D.Mat]

copy_diag ?n ?ofsy ?incy ?y ?ar ?ac a

copy_row [Lacaml__C.Mat]

copy_row ?vec mat int

copy_row [Lacaml__Z.Mat]

copy_row ?vec mat int

copy_row [Lacaml__S.Mat]

copy_row ?vec mat int

copy_row [Lacaml__D.Mat]

copy_row ?vec mat int

cos [Lacaml__S.Mat]

cos ?m ?n ?br ?bc ?b ?ar ?ac a computes the cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

cos [Lacaml__S.Vec]

cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements of the vector x using incx as incremental steps.

cos [Lacaml__D.Mat]

cos ?m ?n ?br ?bc ?b ?ar ?ac a computes the cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

cos [Lacaml__D.Vec]

cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements of the vector x using incx as incremental steps.

cosh [Lacaml__S.Mat]

cosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

cosh [Lacaml__S.Vec]

cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic cosine of n elements of the vector x using incx as incremental steps.

cosh [Lacaml__D.Mat]

cosh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic cosine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

cosh [Lacaml__D.Vec]

cosh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic cosine of n elements of the vector x using incx as incremental steps.

cpab [Lacaml__S.Mat]

cpab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m-by-n range of elements of matrices a and b elementwise, and adds the result to and stores it in the specified range in c.

cpab [Lacaml__D.Mat]

cpab ?m ?n ?cr ?cc c ?ar ?ac a ?br ?bc b multiplies designated m-by-n range of elements of matrices a and b elementwise, and adds the result to and stores it in the specified range in c.

cr_str [Lacaml__utils]
create [Lacaml__C.Mat]

create m n

create [Lacaml__C.Vec]

create n

create [Lacaml__Z.Mat]

create m n

create [Lacaml__Z.Vec]

create n

create [Lacaml__S.Mat]

create m n

create [Lacaml__S.Vec]

create n

create [Lacaml__D.Mat]

create m n

create [Lacaml__D.Vec]

create n

create [Lacaml__io.Context]
create_int32_vec [Lacaml__common]

create_int32_vec n

create_int_vec [Lacaml__common]

create_int_vec n

create_mvec [Lacaml__C.Mat]

create_mvec m

create_mvec [Lacaml__Z.Mat]

create_mvec m

create_mvec [Lacaml__S.Mat]

create_mvec m

create_mvec [Lacaml__D.Mat]

create_mvec m

D
d_str [Lacaml__utils]
detri [Lacaml__C.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

detri [Lacaml__Z.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

detri [Lacaml__S.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

detri [Lacaml__D.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

dim [Lacaml__C.Vec]

dim x

dim [Lacaml__Z.Vec]

dim x

dim [Lacaml__S.Vec]

dim x

dim [Lacaml__D.Vec]

dim x

dim1 [Lacaml__C.Mat]

dim1 m

dim1 [Lacaml__Z.Mat]

dim1 m

dim1 [Lacaml__S.Mat]

dim1 m

dim1 [Lacaml__D.Mat]

dim1 m

dim2 [Lacaml__C.Mat]

dim2 m

dim2 [Lacaml__Z.Mat]

dim2 m

dim2 [Lacaml__S.Mat]

dim2 m

dim2 [Lacaml__D.Mat]

dim2 m

div [Lacaml__C.Mat]

div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

div [Lacaml__C.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

div [Lacaml__Z.Mat]

div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

div [Lacaml__Z.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

div [Lacaml__S.Mat]

div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

div [Lacaml__S.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

div [Lacaml__D.Mat]

div ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the division of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

div [Lacaml__D.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

dl_str [Lacaml__utils]
dot [Lacaml__S]

dot ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dot [Lacaml__D]

dot ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotc [Lacaml__C]

dotc ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotc [Lacaml__Z]

dotc ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotu [Lacaml__C]

dotu ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotu [Lacaml__Z]

dotu ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

du_str [Lacaml__utils]
dummy_select_fun [Lacaml__utils]
E
e_str [Lacaml__utils]
ellipsis_default [Lacaml__io.Context]
empty [Lacaml__C.Mat]

empty, the empty matrix.

empty [Lacaml__C.Vec]

empty, the empty vector.

empty [Lacaml__Z.Mat]

empty, the empty matrix.

empty [Lacaml__Z.Vec]

empty, the empty vector.

empty [Lacaml__S.Mat]

empty, the empty matrix.

empty [Lacaml__S.Vec]

empty, the empty vector.

empty [Lacaml__D.Mat]

empty, the empty matrix.

empty [Lacaml__D.Vec]

empty, the empty vector.

empty_int32_vec [Lacaml__utils]
erf [Lacaml__S.Mat]

erf ?m ?n ?br ?bc ?b ?ar ?ac a computes the error function of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

erf [Lacaml__S.Vec]

erf ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the error function for n elements of the vector x using incx as incremental steps.

erf [Lacaml__D.Mat]

erf ?m ?n ?br ?bc ?b ?ar ?ac a computes the error function of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

erf [Lacaml__D.Vec]

erf ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the error function for n elements of the vector x using incx as incremental steps.

erfc [Lacaml__S.Mat]

erfc ?m ?n ?br ?bc ?b ?ar ?ac a computes the complementary error function of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

erfc [Lacaml__S.Vec]

erfc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the complementary error function for n elements of the vector x using incx as incremental steps.

erfc [Lacaml__D.Mat]

erfc ?m ?n ?br ?bc ?b ?ar ?ac a computes the complementary error function of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

erfc [Lacaml__D.Vec]

erfc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the complementary error function for n elements of the vector x using incx as incremental steps.

exp [Lacaml__S.Mat]

exp ?m ?n ?br ?bc ?b ?ar ?ac a computes the exponential of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

exp [Lacaml__S.Vec]

exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential of n elements of the vector x using incx as incremental steps.

exp [Lacaml__D.Mat]

exp ?m ?n ?br ?bc ?b ?ar ?ac a computes the exponential of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

exp [Lacaml__D.Vec]

exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential of n elements of the vector x using incx as incremental steps.

exp2 [Lacaml__S.Mat]

exp2 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-2 exponential of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

exp2 [Lacaml__S.Vec]

exp2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 exponential of n elements of the vector x using incx as incremental steps.

exp2 [Lacaml__D.Mat]

exp2 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-2 exponential of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

exp2 [Lacaml__D.Vec]

exp2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 exponential of n elements of the vector x using incx as incremental steps.

expm1 [Lacaml__S.Mat]

expm1 ?m ?n ?br ?bc ?b ?ar ?ac a computes exp a -. 1. of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

expm1 [Lacaml__S.Vec]

expm1 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes exp x -. 1. for n elements of the vector x using incx as incremental steps.

expm1 [Lacaml__D.Mat]

expm1 ?m ?n ?br ?bc ?b ?ar ?ac a computes exp a -. 1. of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

expm1 [Lacaml__D.Vec]

expm1 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes exp x -. 1. for n elements of the vector x using incx as incremental steps.

F
fill [Lacaml__C.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml__C.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fill [Lacaml__Z.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml__Z.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fill [Lacaml__S.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml__S.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fill [Lacaml__D.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml__D.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

floor [Lacaml__S.Mat]

floor ?m ?n ?br ?bc ?b ?ar ?ac a computes the floor of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

floor [Lacaml__S.Vec]

floor ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the floor of n elements of the vector x using incx as incremental steps.

floor [Lacaml__D.Mat]

floor ?m ?n ?br ?bc ?b ?ar ?ac a computes the floor of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

floor [Lacaml__D.Vec]

floor ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the floor of n elements of the vector x using incx as incremental steps.

fold [Lacaml__C.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold [Lacaml__Z.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold [Lacaml__S.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold [Lacaml__D.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold_cols [Lacaml__C.Mat]

fold_cols f ?n ?ac acc a

fold_cols [Lacaml__Z.Mat]

fold_cols f ?n ?ac acc a

fold_cols [Lacaml__S.Mat]

fold_cols f ?n ?ac acc a

fold_cols [Lacaml__D.Mat]

fold_cols f ?n ?ac acc a

from_col_vec [Lacaml__C.Mat]

from_col_vec v

from_col_vec [Lacaml__Z.Mat]

from_col_vec v

from_col_vec [Lacaml__S.Mat]

from_col_vec v

from_col_vec [Lacaml__D.Mat]

from_col_vec v

from_row_vec [Lacaml__C.Mat]

from_row_vec v

from_row_vec [Lacaml__Z.Mat]

from_row_vec v

from_row_vec [Lacaml__S.Mat]

from_row_vec v

from_row_vec [Lacaml__D.Mat]

from_row_vec v

G
gXmv_get_params [Lacaml__utils]
gbmv [Lacaml__C]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbmv [Lacaml__Z]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbmv [Lacaml__S]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbmv [Lacaml__D]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbsv [Lacaml__C]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

gbsv [Lacaml__Z]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

gbsv [Lacaml__S]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

gbsv [Lacaml__D]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

geXrf_get_params [Lacaml__utils]
gecon [Lacaml__C]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon [Lacaml__Z]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon [Lacaml__S]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon [Lacaml__D]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon_err [Lacaml__utils]
gecon_min_liwork [Lacaml__S]

gecon_min_liwork n

gecon_min_liwork [Lacaml__D]

gecon_min_liwork n

gecon_min_lrwork [Lacaml__C]

gecon_min_lrwork n

gecon_min_lrwork [Lacaml__Z]

gecon_min_lrwork n

gecon_min_lwork [Lacaml__C]

gecon_min_lwork n

gecon_min_lwork [Lacaml__Z]

gecon_min_lwork n

gecon_min_lwork [Lacaml__S]

gecon_min_lwork n

gecon_min_lwork [Lacaml__D]

gecon_min_lwork n

gees [Lacaml__C]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees [Lacaml__Z]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees [Lacaml__S]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees [Lacaml__D]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees_err [Lacaml__utils]
gees_get_params_complex [Lacaml__utils]
gees_get_params_generic [Lacaml__utils]
gees_get_params_real [Lacaml__utils]
geev [Lacaml__C]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a

geev [Lacaml__Z]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a

geev [Lacaml__S]

geev ?work ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr ?wr ?ofswi ?wi ?ar ?ac a

geev [Lacaml__D]

geev ?work ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr ?wr ?ofswi ?wi ?ar ?ac a

geev_gen_get_params [Lacaml__utils]
geev_get_job_side [Lacaml__utils]
geev_min_lrwork [Lacaml__C]

geev_min_lrwork n

geev_min_lrwork [Lacaml__Z]

geev_min_lrwork n

geev_min_lwork [Lacaml__C]

geev_min_lwork n

geev_min_lwork [Lacaml__Z]

geev_min_lwork n

geev_min_lwork [Lacaml__S]

geev_min_lwork vectors n

geev_min_lwork [Lacaml__D]

geev_min_lwork vectors n

geev_opt_lwork [Lacaml__C]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a See geev-function for details about arguments.

geev_opt_lwork [Lacaml__Z]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a See geev-function for details about arguments.

geev_opt_lwork [Lacaml__S]

geev_opt_lwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a See geev-function for details about arguments.

geev_opt_lwork [Lacaml__D]

geev_opt_lwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a See geev-function for details about arguments.

gels [Lacaml__C]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gels [Lacaml__Z]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gels [Lacaml__S]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gels [Lacaml__D]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gelsX_err [Lacaml__utils]
gelsX_get_params [Lacaml__utils]
gelsX_get_s [Lacaml__utils]
gels_min_lwork [Lacaml__C]

gels_min_lwork ~m ~n ~nrhs

gels_min_lwork [Lacaml__Z]

gels_min_lwork ~m ~n ~nrhs

gels_min_lwork [Lacaml__S]

gels_min_lwork ~m ~n ~nrhs

gels_min_lwork [Lacaml__D]

gels_min_lwork ~m ~n ~nrhs

gels_opt_lwork [Lacaml__C]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gels_opt_lwork [Lacaml__Z]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gels_opt_lwork [Lacaml__S]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gels_opt_lwork [Lacaml__D]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gelsd [Lacaml__S]

gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b see LAPACK documentation!

gelsd [Lacaml__D]

gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b see LAPACK documentation!

gelsd_min_iwork [Lacaml__S]

gelsd_min_iwork m n

gelsd_min_iwork [Lacaml__D]

gelsd_min_iwork m n

gelsd_min_lwork [Lacaml__S]

gelsd_min_lwork ~m ~n ~nrhs

gelsd_min_lwork [Lacaml__D]

gelsd_min_lwork ~m ~n ~nrhs

gelsd_opt_lwork [Lacaml__S]

gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b

gelsd_opt_lwork [Lacaml__D]

gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b

gelss [Lacaml__S]

gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gelss [Lacaml__D]

gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gelss_min_lwork [Lacaml__S]

gelss_min_lwork ~m ~n ~nrhs

gelss_min_lwork [Lacaml__D]

gelss_min_lwork ~m ~n ~nrhs

gelss_opt_lwork [Lacaml__S]

gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b

gelss_opt_lwork [Lacaml__D]

gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b

gelsy [Lacaml__S]

gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK documentation!

gelsy [Lacaml__D]

gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK documentation!

gelsy_min_lwork [Lacaml__S]

gelsy_min_lwork ~m ~n ~nrhs

gelsy_min_lwork [Lacaml__D]

gelsy_min_lwork ~m ~n ~nrhs

gelsy_opt_lwork [Lacaml__S]

gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b

gelsy_opt_lwork [Lacaml__D]

gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b

gemm [Lacaml__C]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b performs the operation c := alpha * op(a) * op(b) + beta * c where op(x) = x or xáµ€ depending on transx.

gemm [Lacaml__Z]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b performs the operation c := alpha * op(a) * op(b) + beta * c where op(x) = x or xáµ€ depending on transx.

gemm [Lacaml__S]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b performs the operation c := alpha * op(a) * op(b) + beta * c where op(x) = x or xáµ€ depending on transx.

gemm [Lacaml__D]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b performs the operation c := alpha * op(a) * op(b) + beta * c where op(x) = x or xáµ€ depending on transx.

gemm_diag [Lacaml__C.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_diag [Lacaml__Z.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_diag [Lacaml__S.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_diag [Lacaml__D.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_get_params [Lacaml__utils]
gemm_trace [Lacaml__C.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemm_trace [Lacaml__Z.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemm_trace [Lacaml__S.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemm_trace [Lacaml__D.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemv [Lacaml__C]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x performs the operation y := alpha * op(a) * x + beta * y where op(a) = a or aáµ€ according to the value of trans.

gemv [Lacaml__Z]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x performs the operation y := alpha * op(a) * x + beta * y where op(a) = a or aáµ€ according to the value of trans.

gemv [Lacaml__S]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x performs the operation y := alpha * op(a) * x + beta * y where op(a) = a or aáµ€ according to the value of trans.

gemv [Lacaml__D]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x performs the operation y := alpha * op(a) * x + beta * y where op(a) = a or aáµ€ according to the value of trans.

geqrf [Lacaml__C]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf [Lacaml__Z]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf [Lacaml__S]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf [Lacaml__D]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf_err [Lacaml__utils]
geqrf_min_lwork [Lacaml__C]

geqrf_min_lwork ~n

geqrf_min_lwork [Lacaml__Z]

geqrf_min_lwork ~n

geqrf_min_lwork [Lacaml__S]

geqrf_min_lwork ~n

geqrf_min_lwork [Lacaml__D]

geqrf_min_lwork ~n

geqrf_opt_lwork [Lacaml__C]

geqrf_opt_lwork ?m ?n ?ar ?ac a

geqrf_opt_lwork [Lacaml__Z]

geqrf_opt_lwork ?m ?n ?ar ?ac a

geqrf_opt_lwork [Lacaml__S]

geqrf_opt_lwork ?m ?n ?ar ?ac a

geqrf_opt_lwork [Lacaml__D]

geqrf_opt_lwork ?m ?n ?ar ?ac a

ger [Lacaml__S]

ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see BLAS documentation!

ger [Lacaml__D]

ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see BLAS documentation!

gesdd [Lacaml__S]
gesdd [Lacaml__D]
gesdd_err [Lacaml__utils]
gesdd_get_params [Lacaml__utils]
gesdd_liwork [Lacaml__S]
gesdd_liwork [Lacaml__D]
gesdd_min_lwork [Lacaml__S]

gesdd_min_lwork ?jobz ~m ~n

gesdd_min_lwork [Lacaml__D]

gesdd_min_lwork ?jobz ~m ~n

gesdd_opt_lwork [Lacaml__S]
gesdd_opt_lwork [Lacaml__D]
gesv [Lacaml__C]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesv [Lacaml__Z]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesv [Lacaml__S]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesv [Lacaml__D]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesvd [Lacaml__C]
gesvd [Lacaml__Z]
gesvd [Lacaml__S]
gesvd [Lacaml__D]
gesvd_err [Lacaml__utils]
gesvd_get_params [Lacaml__utils]
gesvd_lrwork [Lacaml__C]

gesvd_lrwork m n

gesvd_lrwork [Lacaml__Z]

gesvd_lrwork m n

gesvd_min_lwork [Lacaml__C]

gesvd_min_lwork ~m ~n

gesvd_min_lwork [Lacaml__Z]

gesvd_min_lwork ~m ~n

gesvd_min_lwork [Lacaml__S]

gesvd_min_lwork ~m ~n

gesvd_min_lwork [Lacaml__D]

gesvd_min_lwork ~m ~n

gesvd_opt_lwork [Lacaml__C]
gesvd_opt_lwork [Lacaml__Z]
gesvd_opt_lwork [Lacaml__S]
gesvd_opt_lwork [Lacaml__D]
get_c [Lacaml__utils]
get_cols_mat_tr [Lacaml__utils]
get_diag_char [Lacaml__utils]
get_dim1_mat [Lacaml__utils]
get_dim2_mat [Lacaml__utils]
get_dim_mat_packed [Lacaml__utils]
get_dim_vec [Lacaml__utils]

get_dim_vec loc vec_name ofs inc vec n_name n if the dimension n is given, check that the vector vec is big enough, otherwise return the maximal n for the given vector vec.

get_inner_dim [Lacaml__utils]
get_job_char [Lacaml__utils]
get_k_mat_sb [Lacaml__utils]
get_mat [Lacaml__utils]
get_mat_cols [Lacaml__utils]

get_mat_cols ~loc ~mat_name ~dim2 ~c ~param_name p checks or infers the matrix column operation length in the option parameter p with name param_name at location loc for matrix with name mat_name and dimension dim2 given the column operation offset c.

get_mat_dim1 [Lacaml__utils]

get_mat_dim1 ~loc ~mat_name ~dim1 ~r ~m ~m_name checks or infers the matrix row operation length in the option parameter m with name m_name at location loc for matrix with name mat_name and dimension dim1 given the row operation offset r.

get_mat_dim2 [Lacaml__utils]

get_mat_dim2 ~loc ~mat_name ~dim2 ~c ~n ~n_name checks or infers the matrix column operation length in the option parameter n with name n_name at location loc for matrix with name mat_name and dimension dim2 given the column operation offset c.

get_mat_m [Lacaml__utils]

get_mat_m ~loc ~mat_name ~dim1 ~r ~m checks or infers the matrix row operation length in the option parameter m at location loc for matrix with name mat_name and dimension dim1 given the row operation offset r.

get_mat_min_dim1 [Lacaml__utils]

get_mat_min_dim1 ~loc ~mat_name ~r ~m

get_mat_min_dim2 [Lacaml__utils]

get_mat_min_dim2 ~loc ~mat_name ~c ~n

get_mat_n [Lacaml__utils]

get_mat_n ~loc ~mat_name ~dim2 ~c ~n checks or infers the matrix column operation length in the option parameter n at location loc for matrix with name mat_name and dimension dim2 given the column operation offset c.

get_mat_rows [Lacaml__utils]

get_mat_rows ~loc ~mat_name ~dim1 ~r p ~param_name checks or infers the matrix row operation length in the option parameter p with name param_name at location loc for matrix with name mat_name and dimension dim1 given the row operation offset r.

get_n_of_a [Lacaml__utils]
get_n_of_square [Lacaml__utils]
get_norm_char [Lacaml__utils]
get_nrhs_of_b [Lacaml__utils]
get_rows_mat_tr [Lacaml__utils]
get_s_d_job_char [Lacaml__utils]
get_side_char [Lacaml__utils]
get_trans_char [Lacaml__utils]
get_unpacked_dim [Lacaml__utils]
get_uplo_char [Lacaml__utils]
get_vec [Lacaml__utils]
get_vec_geom [Lacaml__utils]
get_vec_inc [Lacaml__utils]
get_vec_min_dim [Lacaml__utils]

get_vec_min_dim ~loc ~vec_name ~ofs ~inc ~n

get_vec_n [Lacaml__utils]

get_vec_n ~loc ~vec_name ~dim ~ofs ~inc ~n_name n checks or infers the vector operation length in the option parameter n with name n_name at location loc for vector with name vec_name and dimension dim given the operation offset ofs and increment inc.

get_vec_ofs [Lacaml__utils]
get_vec_start_stop [Lacaml__utils]

get_vec_start_stop ~ofsx ~incx ~n

get_work [Lacaml__utils]
getrf [Lacaml__C]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf [Lacaml__Z]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf [Lacaml__S]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf [Lacaml__D]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf_err [Lacaml__utils]
getrf_get_ipiv [Lacaml__utils]
getrf_lu_err [Lacaml__utils]
getri [Lacaml__C]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml__C.getrf.

getri [Lacaml__Z]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml__Z.getrf.

getri [Lacaml__S]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml__S.getrf.

getri [Lacaml__D]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml__D.getrf.

getri_err [Lacaml__utils]
getri_min_lwork [Lacaml__C]

getri_min_lwork n

getri_min_lwork [Lacaml__Z]

getri_min_lwork n

getri_min_lwork [Lacaml__S]

getri_min_lwork n

getri_min_lwork [Lacaml__D]

getri_min_lwork n

getri_opt_lwork [Lacaml__C]

getri_opt_lwork ?n ?ar ?ac a

getri_opt_lwork [Lacaml__Z]

getri_opt_lwork ?n ?ar ?ac a

getri_opt_lwork [Lacaml__S]

getri_opt_lwork ?n ?ar ?ac a

getri_opt_lwork [Lacaml__D]

getri_opt_lwork ?n ?ar ?ac a

getrs [Lacaml__C]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml__C.getrf.

getrs [Lacaml__Z]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml__Z.getrf.

getrs [Lacaml__S]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml__S.getrf.

getrs [Lacaml__D]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml__D.getrf.

gtsv [Lacaml__C]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

gtsv [Lacaml__Z]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

gtsv [Lacaml__S]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

gtsv [Lacaml__D]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

H
hankel [Lacaml__S.Mat]

hankel n

hankel [Lacaml__D.Mat]

hankel n

has_zero_dim [Lacaml__C.Mat]

has_zero_dim mat checks whether matrix mat has a dimension of size zero.

has_zero_dim [Lacaml__C.Vec]

has_zero_dim vec checks whether vector vec has a dimension of size zero.

has_zero_dim [Lacaml__Z.Mat]

has_zero_dim mat checks whether matrix mat has a dimension of size zero.

has_zero_dim [Lacaml__Z.Vec]

has_zero_dim vec checks whether vector vec has a dimension of size zero.

has_zero_dim [Lacaml__S.Mat]

has_zero_dim mat checks whether matrix mat has a dimension of size zero.

has_zero_dim [Lacaml__S.Vec]

has_zero_dim vec checks whether vector vec has a dimension of size zero.

has_zero_dim [Lacaml__D.Mat]

has_zero_dim mat checks whether matrix mat has a dimension of size zero.

has_zero_dim [Lacaml__D.Vec]

has_zero_dim vec checks whether vector vec has a dimension of size zero.

hilbert [Lacaml__S.Mat]

hilbert n

hilbert [Lacaml__D.Mat]

hilbert n

horizontal_default [Lacaml__io.Context]
hypot [Lacaml__S.Mat]

hypot ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes sqrt(a*a + b*b) for the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

hypot [Lacaml__S.Vec]

hypot ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes sqrt(x*x + y*y) of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

hypot [Lacaml__D.Mat]

hypot ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes sqrt(a*a + b*b) for the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

hypot [Lacaml__D.Vec]

hypot ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes sqrt(x*x + y*y) of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

I
iamax [Lacaml__C]

iamax ?n ?ofsx ?incx x see BLAS documentation!

iamax [Lacaml__Z]

iamax ?n ?ofsx ?incx x see BLAS documentation!

iamax [Lacaml__S]

iamax ?n ?ofsx ?incx x see BLAS documentation!

iamax [Lacaml__D]

iamax ?n ?ofsx ?incx x see BLAS documentation!

identity [Lacaml__C.Mat]

identity n

identity [Lacaml__Z.Mat]

identity n

identity [Lacaml__S.Mat]

identity n

identity [Lacaml__D.Mat]

identity n

ilaenv [Lacaml__utils]
init [Lacaml__C.Vec]

init n f

init [Lacaml__Z.Vec]

init n f

init [Lacaml__S.Vec]

init n f

init [Lacaml__D.Vec]

init n f

init_cols [Lacaml__C.Mat]

init_cols m n f

init_cols [Lacaml__Z.Mat]

init_cols m n f

init_cols [Lacaml__S.Mat]

init_cols m n f

init_cols [Lacaml__D.Mat]

init_cols m n f

init_rows [Lacaml__C.Mat]

init_cols m n f

init_rows [Lacaml__Z.Mat]

init_cols m n f

init_rows [Lacaml__S.Mat]

init_cols m n f

init_rows [Lacaml__D.Mat]

init_cols m n f

ipiv_str [Lacaml__utils]
iseed_str [Lacaml__utils]
iter [Lacaml__C.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iter [Lacaml__Z.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iter [Lacaml__S.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iter [Lacaml__D.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iteri [Lacaml__C.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

iteri [Lacaml__Z.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

iteri [Lacaml__S.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

iteri [Lacaml__D.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

J
job_char_false [Lacaml__utils]
job_char_true [Lacaml__utils]
K
k1_str [Lacaml__utils]
k2_str [Lacaml__utils]
k_str [Lacaml__utils]
ka_str [Lacaml__utils]
kb_str [Lacaml__utils]
kd_str [Lacaml__utils]
kl_str [Lacaml__utils]
ku_str [Lacaml__utils]
L
lacpy [Lacaml__C]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular) (sub-)matrix a (to an optional (sub-)matrix b) and return it.

lacpy [Lacaml__Z]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular) (sub-)matrix a (to an optional (sub-)matrix b) and return it.

lacpy [Lacaml__S]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular) (sub-)matrix a (to an optional (sub-)matrix b) and return it.

lacpy [Lacaml__D]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy the (triangular) (sub-)matrix a (to an optional (sub-)matrix b) and return it.

lamch [Lacaml__S]

lamch cmach see LAPACK documentation!

lamch [Lacaml__D]

lamch cmach see LAPACK documentation!

lange [Lacaml__C]

lange ?m ?n ?norm ?work ?ar ?ac a

lange [Lacaml__Z]

lange ?m ?n ?norm ?work ?ar ?ac a

lange [Lacaml__S]

lange ?m ?n ?norm ?work ?ar ?ac a

lange [Lacaml__D]

lange ?m ?n ?norm ?work ?ar ?ac a

lange_min_lwork [Lacaml__C]

lange_min_lwork m norm

lange_min_lwork [Lacaml__Z]

lange_min_lwork m norm

lange_min_lwork [Lacaml__S]

lange_min_lwork m norm

lange_min_lwork [Lacaml__D]

lange_min_lwork m norm

lansy [Lacaml__C]

lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!

lansy [Lacaml__Z]

lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!

lansy [Lacaml__S]

lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!

lansy [Lacaml__D]

lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!

lansy_min_lwork [Lacaml__C]

lansy_min_lwork m norm

lansy_min_lwork [Lacaml__Z]

lansy_min_lwork m norm

lansy_min_lwork [Lacaml__S]

lansy_min_lwork m norm

lansy_min_lwork [Lacaml__D]

lansy_min_lwork m norm

lapmt [Lacaml__C]

lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a according to the permutations in k.

lapmt [Lacaml__Z]

lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a according to the permutations in k.

lapmt [Lacaml__S]

lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a according to the permutations in k.

lapmt [Lacaml__D]

lapmt ?forward ?n ?m ?ar ?ac a k swap columns of a according to the permutations in k.

larnv [Lacaml__C]

larnv ?idist ?iseed ?n ?ofsx ?x ()

larnv [Lacaml__Z]

larnv ?idist ?iseed ?n ?ofsx ?x ()

larnv [Lacaml__S]

larnv ?idist ?iseed ?n ?ofsx ?x ()

larnv [Lacaml__D]

larnv ?idist ?iseed ?n ?ofsx ?x ()

lassq [Lacaml__C]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lassq [Lacaml__Z]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lassq [Lacaml__S]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lassq [Lacaml__D]

lassq ?n ?ofsx ?incx ?scale ?sumsq

laswp [Lacaml__C]

laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to ipiv.

laswp [Lacaml__Z]

laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to ipiv.

laswp [Lacaml__S]

laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to ipiv.

laswp [Lacaml__D]

laswp ?n ?ar ?ac a ?k1 ?k2 ?incx ipiv swap rows of a according to ipiv.

lauum [Lacaml__C]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

lauum [Lacaml__Z]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

lauum [Lacaml__S]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

lauum [Lacaml__D]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

linspace [Lacaml__C.Vec]

linspace ?z a b n

linspace [Lacaml__Z.Vec]

linspace ?z a b n

linspace [Lacaml__S.Vec]

linspace ?z a b n

linspace [Lacaml__D.Vec]

linspace ?z a b n

liwork_str [Lacaml__utils]
log [Lacaml__S.Mat]

log ?m ?n ?br ?bc ?b ?ar ?ac a computes the logarithm of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log [Lacaml__S.Vec]

log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm of n elements of the vector x using incx as incremental steps.

log [Lacaml__D.Mat]

log ?m ?n ?br ?bc ?b ?ar ?ac a computes the logarithm of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log [Lacaml__D.Vec]

log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm of n elements of the vector x using incx as incremental steps.

log10 [Lacaml__S.Mat]

log10 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-10 logarithm of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log10 [Lacaml__S.Vec]

log10 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-10 logarithm of n elements of the vector x using incx as incremental steps.

log10 [Lacaml__D.Mat]

log10 ?m ?n ?br ?bc ?b ?ar ?ac a computes the base-10 logarithm of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log10 [Lacaml__D.Vec]

log10 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-10 logarithm of n elements of the vector x using incx as incremental steps.

log1p [Lacaml__S.Mat]

log1p ?m ?n ?br ?bc ?b ?ar ?ac a computes log (1 + a) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log1p [Lacaml__S.Vec]

log1p ?n ?ofsy ?incy ?y ?ofsx ?incx x computes log (1 + x) for n elements of the vector x using incx as incremental steps.

log1p [Lacaml__D.Mat]

log1p ?m ?n ?br ?bc ?b ?ar ?ac a computes log (1 + a) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log1p [Lacaml__D.Vec]

log1p ?n ?ofsy ?incy ?y ?ofsx ?incx x computes log (1 + x) for n elements of the vector x using incx as incremental steps.

log2 [Lacaml__S.Mat]

log2 ?m ?n ?br ?bc ?b ?ar ?ac a computes base-2 logarithm of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log2 [Lacaml__S.Vec]

log2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 logarithm of n elements of the vector x using incx as incremental steps.

log2 [Lacaml__D.Mat]

log2 ?m ?n ?br ?bc ?b ?ar ?ac a computes base-2 logarithm of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

log2 [Lacaml__D.Vec]

log2 ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the base-2 logarithm of n elements of the vector x using incx as incremental steps.

log_sum_exp [Lacaml__S.Mat]

log_sum_exp ?m ?n ?ar ?ac a computes the logarithm of the sum of exponentials of all elements in the m-by-n submatrix starting at row ar and column ac.

log_sum_exp [Lacaml__S.Vec]

log_sum_exp ?n ?ofsx ?incx x computes the logarithm of the sum of exponentials of the n elements in vector x, separated by incx incremental steps.

log_sum_exp [Lacaml__D.Mat]

log_sum_exp ?m ?n ?ar ?ac a computes the logarithm of the sum of exponentials of all elements in the m-by-n submatrix starting at row ar and column ac.

log_sum_exp [Lacaml__D.Vec]

log_sum_exp ?n ?ofsx ?incx x computes the logarithm of the sum of exponentials of the n elements in vector x, separated by incx incremental steps.

logistic [Lacaml__S.Mat]

logistic ?m ?n ?br ?bc ?b ?ar ?ac a computes the logistic function 1/(1 + exp(-a) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

logistic [Lacaml__S.Vec]

logistic ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logistict function 1/(1 + exp(-a) for n elements of the vector x using incx as incremental steps.

logistic [Lacaml__D.Mat]

logistic ?m ?n ?br ?bc ?b ?ar ?ac a computes the logistic function 1/(1 + exp(-a) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

logistic [Lacaml__D.Vec]

logistic ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logistict function 1/(1 + exp(-a) for n elements of the vector x using incx as incremental steps.

logspace [Lacaml__C.Vec]

logspace ?z a b base n

logspace [Lacaml__Z.Vec]

logspace ?z a b base n

logspace [Lacaml__S.Vec]

logspace ?z a b base n

logspace [Lacaml__D.Vec]

logspace ?z a b base n

lsc [Lacaml__io.Toplevel]
lwork_str [Lacaml__utils]
M
m_str [Lacaml__utils]
make [Lacaml__C.Mat]

make m n x

make [Lacaml__C.Vec]

make n x

make [Lacaml__Z.Mat]

make m n x

make [Lacaml__Z.Vec]

make n x

make [Lacaml__S.Mat]

make m n x

make [Lacaml__S.Vec]

make n x

make [Lacaml__D.Mat]

make m n x

make [Lacaml__D.Vec]

make n x

make0 [Lacaml__C.Mat]

make0 m n x

make0 [Lacaml__C.Vec]

make0 n x

make0 [Lacaml__Z.Mat]

make0 m n x

make0 [Lacaml__Z.Vec]

make0 n x

make0 [Lacaml__S.Mat]

make0 m n x

make0 [Lacaml__S.Vec]

make0 n x

make0 [Lacaml__D.Mat]

make0 m n x

make0 [Lacaml__D.Vec]

make0 n x

make_mvec [Lacaml__C.Mat]

make_mvec m x

make_mvec [Lacaml__Z.Mat]

make_mvec m x

make_mvec [Lacaml__S.Mat]

make_mvec m x

make_mvec [Lacaml__D.Mat]

make_mvec m x

map [Lacaml__C.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml__C.Vec]

map f ?n ?ofsx ?incx x

map [Lacaml__Z.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml__Z.Vec]

map f ?n ?ofsx ?incx x

map [Lacaml__S.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml__S.Vec]

map f ?n ?ofsx ?incx x

map [Lacaml__D.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml__D.Vec]

map f ?n ?ofsx ?incx x

mat_from_vec [Lacaml__common]

mat_from_vec a converts the vector a into a matrix with Array1.dim a rows and 1 column.

max [Lacaml__C.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max [Lacaml__Z.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max [Lacaml__S.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max [Lacaml__D.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max2 [Lacaml__S.Mat]

max2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise maximum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

max2 [Lacaml__S.Vec]

max2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the maximum of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

max2 [Lacaml__D.Mat]

max2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise maximum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

max2 [Lacaml__D.Vec]

max2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the maximum of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

min [Lacaml__C.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml__Z.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml__S.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml__D.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min2 [Lacaml__S.Mat]

min2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise minimum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

min2 [Lacaml__S.Vec]

min2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the minimum of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

min2 [Lacaml__D.Mat]

min2 ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the elementwise minimum of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

min2 [Lacaml__D.Vec]

min2 ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes the minimum of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml__C.Mat]

mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise product of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

mul [Lacaml__C.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml__Z.Mat]

mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise product of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

mul [Lacaml__Z.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml__S.Mat]

mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise product of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

mul [Lacaml__S.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml__D.Mat]

mul ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the element-wise product of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

mul [Lacaml__D.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mvec_of_array [Lacaml__C.Mat]

mvec_of_array ar

mvec_of_array [Lacaml__Z.Mat]

mvec_of_array ar

mvec_of_array [Lacaml__S.Mat]

mvec_of_array ar

mvec_of_array [Lacaml__D.Mat]

mvec_of_array ar

mvec_to_array [Lacaml__C.Mat]

mvec_to_array mat

mvec_to_array [Lacaml__Z.Mat]

mvec_to_array mat

mvec_to_array [Lacaml__S.Mat]

mvec_to_array mat

mvec_to_array [Lacaml__D.Mat]

mvec_to_array mat

N
n_str [Lacaml__utils]
neg [Lacaml__C.Mat]

neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

neg [Lacaml__C.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

neg [Lacaml__Z.Mat]

neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

neg [Lacaml__Z.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

neg [Lacaml__S.Mat]

neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

neg [Lacaml__S.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

neg [Lacaml__D.Mat]

neg ?m ?n ?br ?bc ?b ?ar ?ac a computes the negative of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

neg [Lacaml__D.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

nrhs_str [Lacaml__utils]
nrm2 [Lacaml__C]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

nrm2 [Lacaml__Z]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

nrm2 [Lacaml__S]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

nrm2 [Lacaml__D]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

O
of_array [Lacaml__C.Mat]

of_array ar

of_array [Lacaml__C.Vec]

of_array ar

of_array [Lacaml__Z.Mat]

of_array ar

of_array [Lacaml__Z.Vec]

of_array ar

of_array [Lacaml__S.Mat]

of_array ar

of_array [Lacaml__S.Vec]

of_array ar

of_array [Lacaml__D.Mat]

of_array ar

of_array [Lacaml__D.Vec]

of_array ar

of_col_vecs [Lacaml__C.Mat]

of_col_vecs ar

of_col_vecs [Lacaml__Z.Mat]

of_col_vecs ar

of_col_vecs [Lacaml__S.Mat]

of_col_vecs ar

of_col_vecs [Lacaml__D.Mat]

of_col_vecs ar

of_col_vecs_list [Lacaml__C.Mat]

of_col_vecs_list ar

of_col_vecs_list [Lacaml__Z.Mat]

of_col_vecs_list ar

of_col_vecs_list [Lacaml__S.Mat]

of_col_vecs_list ar

of_col_vecs_list [Lacaml__D.Mat]

of_col_vecs_list ar

of_diag [Lacaml__C.Mat]

of_diag ?n ?br ?bc ?b ?ofsx ?incx x

of_diag [Lacaml__Z.Mat]

of_diag ?n ?br ?bc ?b ?ofsx ?incx x

of_diag [Lacaml__S.Mat]

of_diag ?n ?br ?bc ?b ?ofsx ?incx x

of_diag [Lacaml__D.Mat]

of_diag ?n ?br ?bc ?b ?ofsx ?incx x

of_list [Lacaml__C.Mat]

of_list ls

of_list [Lacaml__C.Vec]

of_list l

of_list [Lacaml__Z.Mat]

of_list ls

of_list [Lacaml__Z.Vec]

of_list l

of_list [Lacaml__S.Mat]

of_list ls

of_list [Lacaml__S.Vec]

of_list l

of_list [Lacaml__D.Mat]

of_list ls

of_list [Lacaml__D.Vec]

of_list l

ofs_str [Lacaml__utils]
orgqr [Lacaml__S]

orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!

orgqr [Lacaml__D]

orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!

orgqr_err [Lacaml__utils]
orgqr_get_params [Lacaml__utils]
orgqr_min_lwork [Lacaml__S]

orgqr_min_lwork ~n

orgqr_min_lwork [Lacaml__D]

orgqr_min_lwork ~n

orgqr_opt_lwork [Lacaml__S]

orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a

orgqr_opt_lwork [Lacaml__D]

orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a

ormqr [Lacaml__S]

ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c see LAPACK documentation!

ormqr [Lacaml__D]

ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c see LAPACK documentation!

ormqr_err [Lacaml__utils]
ormqr_get_params [Lacaml__utils]
ormqr_opt_lwork [Lacaml__S]

ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c

ormqr_opt_lwork [Lacaml__D]

ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c

P
packed [Lacaml__C.Mat]

packed ?up ?n ?ar ?ac a

packed [Lacaml__Z.Mat]

packed ?up ?n ?ar ?ac a

packed [Lacaml__S.Mat]

packed ?up ?n ?ar ?ac a

packed [Lacaml__D.Mat]

packed ?up ?n ?ar ?ac a

pascal [Lacaml__S.Mat]

pascal n

pascal [Lacaml__D.Mat]

pascal n

pbsv [Lacaml__C]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pbsv [Lacaml__Z]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pbsv [Lacaml__S]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pbsv [Lacaml__D]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pocon [Lacaml__C]

pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a

pocon [Lacaml__Z]

pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a

pocon [Lacaml__S]

pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a

pocon [Lacaml__D]

pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a

pocon_min_liwork [Lacaml__S]

pocon_min_liwork n

pocon_min_liwork [Lacaml__D]

pocon_min_liwork n

pocon_min_lrwork [Lacaml__C]

pocon_min_lrwork n

pocon_min_lrwork [Lacaml__Z]

pocon_min_lrwork n

pocon_min_lwork [Lacaml__C]

pocon_min_lwork n

pocon_min_lwork [Lacaml__Z]

pocon_min_lwork n

pocon_min_lwork [Lacaml__S]

pocon_min_lwork n

pocon_min_lwork [Lacaml__D]

pocon_min_lwork n

posv [Lacaml__C]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

posv [Lacaml__Z]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

posv [Lacaml__S]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

posv [Lacaml__D]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

potrf [Lacaml__C]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf [Lacaml__Z]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf [Lacaml__S]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf [Lacaml__D]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf_chol_err [Lacaml__utils]
potrf_err [Lacaml__utils]
potri [Lacaml__C]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__C.potrf.

potri [Lacaml__Z]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__Z.potrf.

potri [Lacaml__S]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__S.potrf.

potri [Lacaml__D]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__D.potrf.

potrs [Lacaml__C]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__C.potrf.

potrs [Lacaml__Z]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__Z.potrf.

potrs [Lacaml__S]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__S.potrf.

potrs [Lacaml__D]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml__D.potrf.

potrs_err [Lacaml__utils]
pow [Lacaml__S.Mat]

pow ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes pow(a, b) for the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

pow [Lacaml__S.Vec]

pow ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes pow(a, b) of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

pow [Lacaml__D.Mat]

pow ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes pow(a, b) for the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

pow [Lacaml__D.Vec]

pow ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y computes pow(a, b) of n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

pp_cmat [Lacaml__io.Toplevel]
pp_cmat [Lacaml__io]
pp_complex_el_default [Lacaml__io]

fprintf ppf "(%G, %Gi)" el.re el.im

pp_cvec [Lacaml__io.Toplevel]
pp_cvec [Lacaml__io]
pp_float_el_default [Lacaml__io]

fprintf ppf "%G" el

pp_fmat [Lacaml__io.Toplevel]
pp_fmat [Lacaml__io]
pp_fvec [Lacaml__io.Toplevel]
pp_fvec [Lacaml__io]
pp_imat [Lacaml__io.Toplevel]
pp_imat [Lacaml__io]
pp_int32_el [Lacaml__io]

fprintf ppf "%ld" el

pp_ivec [Lacaml__io.Toplevel]
pp_ivec [Lacaml__io]
pp_labeled_cmat [Lacaml__io]
pp_labeled_cvec [Lacaml__io]
pp_labeled_fmat [Lacaml__io]
pp_labeled_fvec [Lacaml__io]
pp_labeled_imat [Lacaml__io]
pp_labeled_ivec [Lacaml__io]
pp_labeled_rcvec [Lacaml__io]
pp_labeled_rfvec [Lacaml__io]
pp_labeled_rivec [Lacaml__io]
pp_lcmat [Lacaml__io]
pp_lcvec [Lacaml__io]
pp_lfmat [Lacaml__io]
pp_lfvec [Lacaml__io]
pp_limat [Lacaml__io]
pp_livec [Lacaml__io]
pp_mat [Lacaml__C]

Pretty-printer for matrices.

pp_mat [Lacaml__Z]

Pretty-printer for matrices.

pp_mat [Lacaml__S]

Pretty-printer for matrices.

pp_mat [Lacaml__D]

Pretty-printer for matrices.

pp_mat_gen [Lacaml__io]

pp_mat_gen ?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col ?pp_left ?pp_right ?pad pp_el ppf mat

pp_num [Lacaml__C]

pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)" el.re el.im.

pp_num [Lacaml__Z]

pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)" el.re el.im.

pp_num [Lacaml__S]

pp_num ppf el is equivalent to fprintf ppf "%G" el.

pp_num [Lacaml__D]

pp_num ppf el is equivalent to fprintf ppf "%G" el.

pp_ocmat [Lacaml__io]
pp_ocvec [Lacaml__io]
pp_ofmat [Lacaml__io]
pp_ofvec [Lacaml__io]
pp_oimat [Lacaml__io]
pp_oivec [Lacaml__io]
pp_omat [Lacaml__io]

pp_omat ppf pp_el mat prints matrix mat to formatter ppf in OCaml-style using the element printer pp_el.

pp_ovec [Lacaml__io]

pp_ovec ppf pp_el vec prints the column vector vec to formatter ppf in OCaml-style using the element printer pp_el.

pp_rcvec [Lacaml__io.Toplevel]
pp_rcvec [Lacaml__io]
pp_rfvec [Lacaml__io.Toplevel]
pp_rfvec [Lacaml__io]
pp_rivec [Lacaml__io.Toplevel]
pp_rivec [Lacaml__io]
pp_rlcvec [Lacaml__io]
pp_rlfvec [Lacaml__io]
pp_rlivec [Lacaml__io]
pp_rocvec [Lacaml__io]
pp_rofvec [Lacaml__io]
pp_roivec [Lacaml__io]
pp_rovec [Lacaml__io]

pp_rovec ppf pp_el vec prints the row vector vec to formatter ppf in OCaml-style using the element printer pp_el.

pp_vec [Lacaml__C]

Pretty-printer for column vectors.

pp_vec [Lacaml__Z]

Pretty-printer for column vectors.

pp_vec [Lacaml__S]

Pretty-printer for column vectors.

pp_vec [Lacaml__D]

Pretty-printer for column vectors.

ppsv [Lacaml__C]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

ppsv [Lacaml__Z]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

ppsv [Lacaml__S]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

ppsv [Lacaml__D]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

prec [Lacaml__C]

Precision for this submodule C.

prec [Lacaml__Z]

Precision for this submodule Z.

prec [Lacaml__S]

Precision for this submodule S.

prec [Lacaml__D]

Precision for this submodule D.

prod [Lacaml__C.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

prod [Lacaml__Z.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

prod [Lacaml__S.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

prod [Lacaml__D.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

ptsv [Lacaml__C]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

ptsv [Lacaml__Z]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

ptsv [Lacaml__S]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

ptsv [Lacaml__D]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

R
r_str [Lacaml__utils]
raise_bad_mat_ofs [Lacaml__utils]

raise_bad_mat_ofs ~loc ~name ~ofs_name ~ofs ~max_ofs

raise_mat_bad_c [Lacaml__utils]

raise_mat_bad_c ~loc ~mat_name ~c ~max_c

raise_mat_bad_r [Lacaml__utils]

raise_mat_bad_r ~loc ~mat_name ~r ~max_r

raise_max_len [Lacaml__utils]

raise_max_len ~loc ~len_name ~len ~max_len

raise_var_lt0 [Lacaml__utils]

raise_var_lt0 ~loc ~name var

raise_vec_bad_ofs [Lacaml__utils]

raise_vec_bad_ofs ~loc ~vec_name ~ofs ~max_ofs

raise_vec_min_dim [Lacaml__utils]

raise_vec_min_dim ~loc ~vec_name ~dim ~min_dim

random [Lacaml__C.Mat]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n

random [Lacaml__C.Vec]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range n

random [Lacaml__Z.Mat]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n

random [Lacaml__Z.Vec]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range n

random [Lacaml__S.Mat]

random ?rnd_state ?from ?range m n

random [Lacaml__S.Vec]

random ?rnd_state ?from ?range n

random [Lacaml__D.Mat]

random ?rnd_state ?from ?range m n

random [Lacaml__D.Vec]

random ?rnd_state ?from ?range n

reci [Lacaml__C.Mat]

reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

reci [Lacaml__C.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

reci [Lacaml__Z.Mat]

reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

reci [Lacaml__Z.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

reci [Lacaml__S.Mat]

reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

reci [Lacaml__S.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

reci [Lacaml__D.Mat]

reci ?m ?n ?br ?bc ?b ?ar ?ac a computes the reciprocal of the elements in the m by n (sub-)matrix of the matrix a starting in row ar and column ac.

reci [Lacaml__D.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

relu [Lacaml__S.Mat]

relu ?m ?n ?br ?bc ?b ?ar ?ac a computes the rectified linear unit function max(a, 0) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

relu [Lacaml__S.Vec]

relu ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the rectified linear unit function max(x, 0) for n elements of the vector x using incx as incremental steps.

relu [Lacaml__D.Mat]

relu ?m ?n ?br ?bc ?b ?ar ?ac a computes the rectified linear unit function max(a, 0) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

relu [Lacaml__D.Vec]

relu ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the rectified linear unit function max(x, 0) for n elements of the vector x using incx as incremental steps.

rev [Lacaml__C.Vec]

rev x reverses vector x (non-destructive).

rev [Lacaml__Z.Vec]

rev x reverses vector x (non-destructive).

rev [Lacaml__S.Vec]

rev x reverses vector x (non-destructive).

rev [Lacaml__D.Vec]

rev x reverses vector x (non-destructive).

rosser [Lacaml__S.Mat]

rosser n

rosser [Lacaml__D.Mat]

rosser n

round [Lacaml__S.Mat]

round ?m ?n ?br ?bc ?b ?ar ?ac a rounds the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

round [Lacaml__S.Vec]

round ?n ?ofsy ?incy ?y ?ofsx ?incx x rounds the n elements of the vector x using incx as incremental steps.

round [Lacaml__D.Mat]

round ?m ?n ?br ?bc ?b ?ar ?ac a rounds the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

round [Lacaml__D.Vec]

round ?n ?ofsy ?incy ?y ?ofsx ?incx x rounds the n elements of the vector x using incx as incremental steps.

S
s_str [Lacaml__utils]
sbev [Lacaml__S]

sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab computes all the eigenvalues and, optionally, eigenvectors of the real symmetric band matrix ab.

sbev [Lacaml__D]

sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab computes all the eigenvalues and, optionally, eigenvectors of the real symmetric band matrix ab.

sbev_min_lwork [Lacaml__S]

sbev_min_lwork n

sbev_min_lwork [Lacaml__D]

sbev_min_lwork n

sbgv [Lacaml__S]

sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form a*x=(lambda)*b*x.

sbgv [Lacaml__D]

sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form a*x=(lambda)*b*x.

sbmv [Lacaml__S]

sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see BLAS documentation!

sbmv [Lacaml__D]

sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see BLAS documentation!

scal [Lacaml__C.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml__C]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal [Lacaml__Z.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml__Z]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal [Lacaml__S.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml__S]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal [Lacaml__D.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml__D]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal_cols [Lacaml__C.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_cols [Lacaml__Z.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_cols [Lacaml__S.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_cols [Lacaml__D.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_rows [Lacaml__C.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

scal_rows [Lacaml__Z.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

scal_rows [Lacaml__S.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

scal_rows [Lacaml__D.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

set_dim_defaults [Lacaml__io.Context]
signum [Lacaml__S.Mat]

signum ?m ?n ?br ?bc ?b ?ar ?ac a computes the sign value (-1 for negative numbers, 0 (or -0) for zero, 1 for positive numbers, nan for nan) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

signum [Lacaml__S.Vec]

signum ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sign value (-1 for negative numbers, 0 (or -0) for zero, 1 for positive numbers, nan for nan) of n elements of the vector x using incx as incremental steps.

signum [Lacaml__D.Mat]

signum ?m ?n ?br ?bc ?b ?ar ?ac a computes the sign value (-1 for negative numbers, 0 (or -0) for zero, 1 for positive numbers, nan for nan) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

signum [Lacaml__D.Vec]

signum ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sign value (-1 for negative numbers, 0 (or -0) for zero, 1 for positive numbers, nan for nan) of n elements of the vector x using incx as incremental steps.

sin [Lacaml__S.Mat]

sin ?m ?n ?br ?bc ?b ?ar ?ac a computes the sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sin [Lacaml__S.Vec]

sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements of the vector x using incx as incremental steps.

sin [Lacaml__D.Mat]

sin ?m ?n ?br ?bc ?b ?ar ?ac a computes the sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sin [Lacaml__D.Vec]

sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements of the vector x using incx as incremental steps.

sinh [Lacaml__S.Mat]

sinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sinh [Lacaml__S.Vec]

sinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic sine of n elements of the vector x using incx as incremental steps.

sinh [Lacaml__D.Mat]

sinh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic sine of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sinh [Lacaml__D.Vec]

sinh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic sine of n elements of the vector x using incx as incremental steps.

softplus [Lacaml__S.Mat]

softplus ?m ?n ?br ?bc ?b ?ar ?ac a computes the softplus function log(1 + exp(x) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

softplus [Lacaml__S.Vec]

softplus ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softplus function log(1 + exp(x) for n elements of the vector x using incx as incremental steps.

softplus [Lacaml__D.Mat]

softplus ?m ?n ?br ?bc ?b ?ar ?ac a computes the softplus function log(1 + exp(x) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

softplus [Lacaml__D.Vec]

softplus ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softplus function log(1 + exp(x) for n elements of the vector x using incx as incremental steps.

softsign [Lacaml__S.Mat]

softsign ?m ?n ?br ?bc ?b ?ar ?ac a computes the softsign function x / (1 + abs(x)) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

softsign [Lacaml__S.Vec]

softsign ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softsign function x / (1 + abs(x)) for n elements of the vector x using incx as incremental steps.

softsign [Lacaml__D.Mat]

softsign ?m ?n ?br ?bc ?b ?ar ?ac a computes the softsign function x / (1 + abs(x)) of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

softsign [Lacaml__D.Vec]

softsign ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the softsign function x / (1 + abs(x)) for n elements of the vector x using incx as incremental steps.

sort [Lacaml__C.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

sort [Lacaml__Z.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

sort [Lacaml__S.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

sort [Lacaml__D.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

spsv [Lacaml__C]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

spsv [Lacaml__Z]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

spsv [Lacaml__S]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

spsv [Lacaml__D]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

sqr [Lacaml__S.Mat]

sqr ?m ?n ?br ?bc ?b ?ar ?ac a computes the square of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sqr [Lacaml__S.Vec]

sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square of n elements of the vector x using incx as incremental steps.

sqr [Lacaml__D.Mat]

sqr ?m ?n ?br ?bc ?b ?ar ?ac a computes the square of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sqr [Lacaml__D.Vec]

sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square of n elements of the vector x using incx as incremental steps.

sqr_nrm2 [Lacaml__C.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqr_nrm2 [Lacaml__Z.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqr_nrm2 [Lacaml__S.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqr_nrm2 [Lacaml__D.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqrt [Lacaml__S.Mat]

sqrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the square root of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sqrt [Lacaml__S.Vec]

sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root of n elements of the vector x using incx as incremental steps.

sqrt [Lacaml__D.Mat]

sqrt ?m ?n ?br ?bc ?b ?ar ?ac a computes the square root of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

sqrt [Lacaml__D.Vec]

sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root of n elements of the vector x using incx as incremental steps.

ssqr [Lacaml__C.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr [Lacaml__Z.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr [Lacaml__S.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr [Lacaml__D.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr_diff [Lacaml__C.Mat]

ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b

ssqr_diff [Lacaml__C.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

ssqr_diff [Lacaml__Z.Mat]

ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b

ssqr_diff [Lacaml__Z.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

ssqr_diff [Lacaml__S.Mat]

ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b

ssqr_diff [Lacaml__S.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

ssqr_diff [Lacaml__D.Mat]

ssqr_diff ?m ?n ?ar ?ac a ?br ?bc b

ssqr_diff [Lacaml__D.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

sub [Lacaml__C.Mat]

sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

sub [Lacaml__C.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sub [Lacaml__Z.Mat]

sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

sub [Lacaml__Z.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sub [Lacaml__S.Mat]

sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

sub [Lacaml__S.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sub [Lacaml__D.Mat]

sub ?m ?n ?cr ?cc ?c ?ar ?ac a ?br ?bc b computes the difference of the m by n sub-matrix of the matrix a starting in row ar and column ac with the corresponding sub-matrix of the matrix b starting in row br and column bc.

sub [Lacaml__D.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sum [Lacaml__C.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml__C.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

sum [Lacaml__Z.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml__Z.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

sum [Lacaml__S.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml__S.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

sum [Lacaml__D.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml__D.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

swap [Lacaml__C.Mat]

swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices) a and b.

swap [Lacaml__C]

swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

swap [Lacaml__Z.Mat]

swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices) a and b.

swap [Lacaml__Z]

swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

swap [Lacaml__S.Mat]

swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices) a and b.

swap [Lacaml__S]

swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

swap [Lacaml__D.Mat]

swap ?m ?n ?ar ?ac a ?br ?bc b swaps the contents of (sub-matrices) a and b.

swap [Lacaml__D]

swap ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

sycon [Lacaml__C]

sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a

sycon [Lacaml__Z]

sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a

sycon [Lacaml__S]

sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a

sycon [Lacaml__D]

sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a

sycon_min_liwork [Lacaml__S]

sycon_min_liwork n

sycon_min_liwork [Lacaml__D]

sycon_min_liwork n

sycon_min_lwork [Lacaml__C]

sycon_min_lwork n

sycon_min_lwork [Lacaml__Z]

sycon_min_lwork n

sycon_min_lwork [Lacaml__S]

sycon_min_lwork n

sycon_min_lwork [Lacaml__D]

sycon_min_lwork n

syev [Lacaml__S]

syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syev [Lacaml__D]

syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syev_min_lwork [Lacaml__S]

syev_min_lwork n

syev_min_lwork [Lacaml__D]

syev_min_lwork n

syev_opt_lwork [Lacaml__S]

syev_opt_lwork ?n ?vectors ?up ?ar ?ac a

syev_opt_lwork [Lacaml__D]

syev_opt_lwork ?n ?vectors ?up ?ar ?ac a

syevd [Lacaml__S]

syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syevd [Lacaml__D]

syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syevd_min_liwork [Lacaml__S]

syevd_min_liwork vectors n

syevd_min_liwork [Lacaml__D]

syevd_min_liwork vectors n

syevd_min_lwork [Lacaml__S]

syevd_min_lwork vectors n

syevd_min_lwork [Lacaml__D]

syevd_min_lwork vectors n

syevd_opt_l_li_work [Lacaml__S]

syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_l_li_work [Lacaml__D]

syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_liwork [Lacaml__S]

syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_liwork [Lacaml__D]

syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_lwork [Lacaml__S]

syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_lwork [Lacaml__D]

syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a

syevr [Lacaml__S]

syevr ?n ?vectors ?range ?up ?abstol ?work ?iwork ?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a range is either `A for computing all eigenpairs, `V (vl, vu) defines the lower and upper range of computed eigenvalues, `I (il, iu) defines the indexes of the computed eigenpairs, which are sorted in ascending order.

syevr [Lacaml__D]

syevr ?n ?vectors ?range ?up ?abstol ?work ?iwork ?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a range is either `A for computing all eigenpairs, `V (vl, vu) defines the lower and upper range of computed eigenvalues, `I (il, iu) defines the indexes of the computed eigenpairs, which are sorted in ascending order.

syevr_min_liwork [Lacaml__S]

syevr_min_liwork n

syevr_min_liwork [Lacaml__D]

syevr_min_liwork n

syevr_min_lwork [Lacaml__S]

syevr_min_lwork n

syevr_min_lwork [Lacaml__D]

syevr_min_lwork n

syevr_opt_l_li_work [Lacaml__S]

syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_l_li_work [Lacaml__D]

syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_liwork [Lacaml__S]

syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_liwork [Lacaml__D]

syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_lwork [Lacaml__S]

syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_lwork [Lacaml__D]

syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

sygv [Lacaml__S]

sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form a*x=(lambda)*b*x, a*b*x=(lambda)*x, or b*a*x=(lambda)*x.

sygv [Lacaml__D]

sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form a*x=(lambda)*b*x, a*b*x=(lambda)*x, or b*a*x=(lambda)*x.

sygv_opt_lwork [Lacaml__S]

sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b

sygv_opt_lwork [Lacaml__D]

sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b

symm [Lacaml__C]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm [Lacaml__Z]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm [Lacaml__S]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm [Lacaml__D]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm2_trace [Lacaml__C.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm2_trace [Lacaml__Z.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm2_trace [Lacaml__S.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm2_trace [Lacaml__D.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm_get_params [Lacaml__utils]
symv [Lacaml__C]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv [Lacaml__Z]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv [Lacaml__S]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv [Lacaml__D]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv_get_params [Lacaml__utils]
syr [Lacaml__S]

syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!

syr [Lacaml__D]

syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!

syr2k [Lacaml__C]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k [Lacaml__Z]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k [Lacaml__S]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k [Lacaml__D]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k_get_params [Lacaml__utils]
syrk [Lacaml__C]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk [Lacaml__Z]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk [Lacaml__S]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk [Lacaml__D]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk_diag [Lacaml__C.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_diag [Lacaml__Z.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_diag [Lacaml__S.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_diag [Lacaml__D.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_get_params [Lacaml__utils]
syrk_trace [Lacaml__C.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

syrk_trace [Lacaml__Z.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

syrk_trace [Lacaml__S.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

syrk_trace [Lacaml__D.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

sysv [Lacaml__C]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv [Lacaml__Z]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv [Lacaml__S]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv [Lacaml__D]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv_opt_lwork [Lacaml__C]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sysv_opt_lwork [Lacaml__Z]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sysv_opt_lwork [Lacaml__S]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sysv_opt_lwork [Lacaml__D]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sytrf [Lacaml__C]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf [Lacaml__Z]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf [Lacaml__S]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf [Lacaml__D]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf_err [Lacaml__utils]
sytrf_fact_err [Lacaml__utils]
sytrf_get_ipiv [Lacaml__utils]
sytrf_min_lwork [Lacaml__C]

sytrf_min_lwork ()

sytrf_min_lwork [Lacaml__Z]

sytrf_min_lwork ()

sytrf_min_lwork [Lacaml__S]

sytrf_min_lwork ()

sytrf_min_lwork [Lacaml__D]

sytrf_min_lwork ()

sytrf_opt_lwork [Lacaml__C]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytrf_opt_lwork [Lacaml__Z]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytrf_opt_lwork [Lacaml__S]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytrf_opt_lwork [Lacaml__D]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytri [Lacaml__C]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__C.sytrf.

sytri [Lacaml__Z]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__Z.sytrf.

sytri [Lacaml__S]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__S.sytrf.

sytri [Lacaml__D]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__D.sytrf.

sytri_min_lwork [Lacaml__C]

sytri_min_lwork n

sytri_min_lwork [Lacaml__Z]

sytri_min_lwork n

sytri_min_lwork [Lacaml__S]

sytri_min_lwork n

sytri_min_lwork [Lacaml__D]

sytri_min_lwork n

sytrs [Lacaml__C]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__C.sytrf.

sytrs [Lacaml__Z]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__Z.sytrf.

sytrs [Lacaml__S]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__S.sytrf.

sytrs [Lacaml__D]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml__D.sytrf.

T
tan [Lacaml__S.Mat]

tan ?m ?n ?br ?bc ?b ?ar ?ac a computes the tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

tan [Lacaml__S.Vec]

tan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the tangent of n elements of the vector x using incx as incremental steps.

tan [Lacaml__D.Mat]

tan ?m ?n ?br ?bc ?b ?ar ?ac a computes the tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

tan [Lacaml__D.Vec]

tan ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the tangent of n elements of the vector x using incx as incremental steps.

tanh [Lacaml__S.Mat]

tanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

tanh [Lacaml__S.Vec]

tanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic tangent of n elements of the vector x using incx as incremental steps.

tanh [Lacaml__D.Mat]

tanh ?m ?n ?br ?bc ?b ?ar ?ac a computes the hyperbolic tangent of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

tanh [Lacaml__D.Vec]

tanh ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the hyperbolic tangent of n elements of the vector x using incx as incremental steps.

tau_str [Lacaml__utils]
tbtrs [Lacaml__C]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs [Lacaml__Z]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs [Lacaml__S]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs [Lacaml__D]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs_err [Lacaml__utils]
to_array [Lacaml__C.Mat]

to_array mat

to_array [Lacaml__C.Vec]

to_array v

to_array [Lacaml__Z.Mat]

to_array mat

to_array [Lacaml__Z.Vec]

to_array v

to_array [Lacaml__S.Mat]

to_array mat

to_array [Lacaml__S.Vec]

to_array v

to_array [Lacaml__D.Mat]

to_array mat

to_array [Lacaml__D.Vec]

to_array v

to_col_vecs [Lacaml__C.Mat]

to_col_vecs mat

to_col_vecs [Lacaml__Z.Mat]

to_col_vecs mat

to_col_vecs [Lacaml__S.Mat]

to_col_vecs mat

to_col_vecs [Lacaml__D.Mat]

to_col_vecs mat

to_col_vecs_list [Lacaml__C.Mat]

to_col_vecs_list mat

to_col_vecs_list [Lacaml__Z.Mat]

to_col_vecs_list mat

to_col_vecs_list [Lacaml__S.Mat]

to_col_vecs_list mat

to_col_vecs_list [Lacaml__D.Mat]

to_col_vecs_list mat

to_list [Lacaml__C.Mat]

to_array mat

to_list [Lacaml__C.Vec]

to_list v

to_list [Lacaml__Z.Mat]

to_array mat

to_list [Lacaml__Z.Vec]

to_list v

to_list [Lacaml__S.Mat]

to_array mat

to_list [Lacaml__S.Vec]

to_list v

to_list [Lacaml__D.Mat]

to_array mat

to_list [Lacaml__D.Vec]

to_list v

toeplitz [Lacaml__S.Mat]

toeplitz v

toeplitz [Lacaml__D.Mat]

toeplitz v

tpXv_get_params [Lacaml__utils]
tpmv [Lacaml__C]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpmv [Lacaml__Z]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpmv [Lacaml__S]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpmv [Lacaml__D]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml__C]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml__Z]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml__S]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml__D]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

trXm_get_params [Lacaml__utils]
trXv_get_params [Lacaml__utils]
trace [Lacaml__C.Mat]

trace m

trace [Lacaml__Z.Mat]

trace m

trace [Lacaml__S.Mat]

trace m

trace [Lacaml__D.Mat]

trace m

transpose_copy [Lacaml__C.Mat]

transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a

transpose_copy [Lacaml__Z.Mat]

transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a

transpose_copy [Lacaml__S.Mat]

transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a

transpose_copy [Lacaml__D.Mat]

transpose_copy ?m ?n ?br ?bc ?b ?ar ?ac a

trmm [Lacaml__C]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmm [Lacaml__Z]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmm [Lacaml__S]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmm [Lacaml__D]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmv [Lacaml__C]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trmv [Lacaml__Z]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trmv [Lacaml__S]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trmv [Lacaml__D]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsm [Lacaml__C]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsm [Lacaml__Z]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsm [Lacaml__S]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsm [Lacaml__D]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsv [Lacaml__C]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsv [Lacaml__Z]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsv [Lacaml__S]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsv [Lacaml__D]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trtri [Lacaml__C]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri [Lacaml__Z]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri [Lacaml__S]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri [Lacaml__D]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri_err [Lacaml__utils]
trtrs [Lacaml__C]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs [Lacaml__Z]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs [Lacaml__S]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs [Lacaml__D]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs_err [Lacaml__utils]
trunc [Lacaml__S.Mat]

trunc ?m ?n ?br ?bc ?b ?ar ?ac a computes the truncation of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

trunc [Lacaml__S.Vec]

trunc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the truncation of the n elements of the vector x using incx as incremental steps.

trunc [Lacaml__D.Mat]

trunc ?m ?n ?br ?bc ?b ?ar ?ac a computes the truncation of the elements in the m by n sub-matrix of the matrix a starting in row ar and column ac.

trunc [Lacaml__D.Vec]

trunc ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the truncation of the n elements of the vector x using incx as incremental steps.

U
u_str [Lacaml__utils]
um_str [Lacaml__utils]
un_str [Lacaml__utils]
unpacked [Lacaml__C.Mat]

unpacked ?up x

unpacked [Lacaml__Z.Mat]

unpacked ?up x

unpacked [Lacaml__S.Mat]

unpacked ?up x

unpacked [Lacaml__D.Mat]

unpacked ?up x

V
vandermonde [Lacaml__S.Mat]

vandermonde v

vandermonde [Lacaml__D.Mat]

vandermonde v

version [Lacaml_version]
vertical_default [Lacaml__io.Context]
vm_str [Lacaml__utils]
vn_str [Lacaml__utils]
vs_str [Lacaml__utils]
vsc_str [Lacaml__utils]
vsr_str [Lacaml__utils]
vt_str [Lacaml__utils]
W
w_str [Lacaml__utils]
wi_str [Lacaml__utils]
wilkinson [Lacaml__S.Mat]

wilkinson n

wilkinson [Lacaml__D.Mat]

wilkinson n

work_str [Lacaml__utils]
wr_str [Lacaml__utils]
X
x_str [Lacaml__utils]
xlange_get_params [Lacaml__utils]
xxcon_err [Lacaml__utils]
xxev_get_params [Lacaml__utils]
xxev_get_wx [Lacaml__utils]
xxsv_a_err [Lacaml__utils]
xxsv_err [Lacaml__utils]
xxsv_get_ipiv [Lacaml__utils]
xxsv_get_params [Lacaml__utils]
xxsv_ind_err [Lacaml__utils]
xxsv_lu_err [Lacaml__utils]
xxsv_pos_err [Lacaml__utils]
xxsv_work_err [Lacaml__utils]
xxtri_err [Lacaml__utils]
xxtri_singular_err [Lacaml__utils]
xxtrs_err [Lacaml__utils]
xxtrs_get_params [Lacaml__utils]
Y
y_str [Lacaml__utils]
Z
z_str [Lacaml__utils]
zmxy [Lacaml__C.Vec]

zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z.

zmxy [Lacaml__Z.Vec]

zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z.

zmxy [Lacaml__S.Vec]

zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z.

zmxy [Lacaml__D.Vec]

zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z.

zpxy [Lacaml__C.Vec]

zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z.

zpxy [Lacaml__Z.Vec]

zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z.

zpxy [Lacaml__S.Vec]

zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z.

zpxy [Lacaml__D.Vec]

zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z.