ERLANG

Simple Network Management Protocol
(SNMP)

Copyright © 1997-2023 Ericsson AB. All Rights Reserved.
Simple Network Management Protocol (SNMP) 5.15
September 20, 2023

Copyright © 1997-2023 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 20, 2023

1.1 SNMP Introduction

1 SNMP User's Guide

A multilingual Simple Network Management Protocol application, featuring an Extensible Agent, a simple manager
and aMIB compiler and facilities for implementing SNMP MIBs etc.

1.1 SNMP Introduction

The SNMP devel opment toolkit contains the following parts:

e An Extensible multi-lingual SNMP agent, which understands SNMPv1 (RFC1157), SNMPv2c (RFC1901,
1905, 1906 and 1907), SNMPv3 (RFC2271, 2272, 2273, 2274 and 2275), or any combination of these
protocols.

e A multi-lingual SNMP manager.
e A MIB compiler, which understands SMIv1 (RFC1155, 1212, and 1215) and SMIv2 (RFC1902, 1903, and
1904).

The SNMP development tool provides an environment for rapid agent/manager prototyping and construction. With
the following information provided, thistool is used to set up a running multi-lingual SNMP agent/manager:

* adescription of a Management Information Base (MIB) in Abstract Syntax Notation One (ASN.1)
e instrumentation functions for the managed objectsin the MIB, written in Erlang.

The advantage of using an extensible (agent/manager) toolkit isto remove details such astype-checking, accessrights,
Protocol Data Unit (PDU), encoding, decoding, and trap distribution from the programmer, who only has to write
the instrumentation functions, which implement the MIBs. The get - next function only has to be implemented for
tables, and not for every variable in the global naming tree. This information can be deduced from the ASN.1 file.

1.1.1 Scope and Purpose

This manual describes the SNMP development tool, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisites are required for understanding the material in the SNMP User's Guide:

» thebasics of the Simple Network Management Protocol version 1 (SNMPv1)

» thebasics of the community-based Simple Network Management Protocol version 2 (SNMPv2c)
» thebasics of the Simple Network Management Protocol version 3 (SNMPv3)

» theknowledge of defining MIBsusing SMIv1 and SMIv2

» familiarity with the Erlang system and Erlang programming

The tool requires Erlang release 4.7 or later.

1.1.3 Definitions
The following definitions are used in the SNMP User's Guide.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 1

1.1 SNMP Introduction

MIB
The conceptual repository for management information is called the Management Information Base (MIB).
It does not hold any data, merely a definition of what data can be accessed. A definition of an MIB isa
description of a collection of managed objects.

SMI
The MIB is specified in an adapted subset of the Abstract Syntax Notation One (ASN.1) language. This
adapted subset is called the Structure of Management Information (SMI).

ASN.1
ASN.1isused in two different waysin SNMP. The SMI is based on ASN.1, and the messages in the protocol
are defined by using ASN.1.

Managed object

A resource to be managed is represented by a managed object, which resides in the MIB. In an SNMP MIB, the
managed objects are either:

« scalar variables, which have only one instance per context. They have single values, not multiple values
like vectors or structures.
» tables, which can grow dynamically.
e atableeement, whichisaspecia type of scalar variable.
Operations
SNMP relies on the three basic operations: get (object), set (object, value) and get-next (object).
Instrumentation function
An instrumentation function is associated with each managed object. Thisis the function, which actually
implements the operations and will be called by the agent when it receives arequest from the management
station.
Manager
A manager generates commands and receives notifications from agents. There usually are only afew managers
in asystem.
Agent
An agent responds to commands from the manager, and sends notification to the manager. There are potentially
many agentsin a system.

1.1.4 About This Manual

In addition to this introductory chapter, the SNMP User's Guide contains the following chapters:

e Chapter 2: "Functional Description" describes the features and operation of the SNMP development toolkit. It
includes topics on Sub-agents and MIB loading, Internal MIBs, and Traps.

e Chapter 3: "The MIB Compiler" describes the features and the operation of the MIB compiler.

» Chapter 4: "Running the application” describes how to start and configure the application. Topics on how to
debug the application are also included.

« Chapter 5: "Definition of Agent Configuration Files" is areference chapter, which contains more detailed
information about the agent configuration files.

* Chapter 6: "Definition of Manager Configuration Files" is areference chapter, which contains more detailed
information about the manager configuration files.

e Chapter 7: "Agent Implementation Example" describes how an MIB can be implemented with the SNMP
Development Toolkit. Implementation examples are included.

* Chapter 8: "Instrumentation Functions" describes how instrumentation functions should be defined in Erlang for
the different operations.

e Chapter 9: "Definition of Instrumentation Functions" is areference chapter which contains more detailed
information about the instrumentation functions.

2 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

» Chapter 10: "Definition of Agent Net if" is areference chapter, which describes the Agent Net if function in
detail.

e Chapter 11: "Definition of Manager Net if" is a reference chapter, which describes the Manager Net if function
in detail.

e Chapter 12: "Advanced Agent Topics' describes sub-agents, agent semantics, audit trail logging, and the
consideration of distributed tables.

* Appendix A describes the conversion of SNMPv2 to SNMPv1 error messages.

* Appendix B contains the RFC1903 text on RowSt at us.

1.1.5 Where to Find More Information

Refer to the following documentation for more information about SNMP and about the Erlang/OTP devel opment
system:

e Marshal T. Rose (1991), "The Simple Book - An Introduction to Internet Management”, Prentice-Hall
e Evan McGinnis and David Perkins (1997), "Understanding SNMP MIBs", Prentice-Hall

e RFC1155, 1157, 1212 and 1215 (SNMPv1)

* RFC1901-1907 (SNMPv2c)

e RFC1908, 2089 (coexistence between SNMPv1 and SNMPv2)

 RFC2271, RFC2273 (SNMP std MIBs)

e theMnesiaUser's Guide

* theErlang 4.4 Extensions User's Guide

» the Reference Manua

* the Erlang Embedded Systems User's Guide

« the System Architecture Support Libraries (SASL) User's Guide

e thelnstallation Guide

e theAsnl User's Guide

e Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Agent Functional Description

The SNMP agent system consists of one Master Agent and optional Sub-agents.

The tool makes it easy to dynamically extend an SNMP agent in run-time. M1Bs can be loaded and unloaded at any
time. It is also easy to change the implementation of an MIB in run-time, without having to recompile the MIB. The
MIB implementation is clearly separated from the agent.

To facilitate incremental MI1B implementation, the tool can generate a prototype implementation for awhole MIB, or
parts thereof. This allows different MIBs and management applications to be developed at the same time.

1.2.1 Features

To implement an agent, the programmer writes instrumentation functions for the variables and the tablesin the MIBs
that the agent is going to support. A running prototype which handles set , get, and get - next can be created
without any programming.

The toolkit provides the following:

e multi-lingual multi-threaded extensible SNMP agent
e easy writing of instrumentation functions with a high-level programming language
» basic fault handling such as automatic type checking

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 3

1.2 Agent Functional Description

* access control

+ authentication

e privacy through encryption

* loading and unloading of MIBsin run-time

» theability to change instrumentation functions without recompiling the MIB

* rapid prototyping environment where the MIB compiler can use generic instrumentation functions, which later
can be refined by the programmer

e asimpleand extensible model for transaction handling and consistency checking of set-requests
» support of the sub-agent concept via distributed Erlang

e amechanism for sending natifications (traps and informs)

e support for implementing SNMP tables in the Mnesia DBMS.

1.2.2 SNMPv1, SNMPv2 and SNMPv3

The SNM P devel opment tool kit workswith all three versions of Standard | nternet Management Framework; SNMPv1,
SNMPv2 and SNMPv3. They all share the same basic structure and components. And they follow the same
architecture.

The versions are defined in following RFCs

* SNMPv1 RFC 1555, 1157 1212, 1213 and 1215

* SNMPv2 RFC 1902 - 1907

* SNMPv3 RFC 2570 - 2575

Over time, as the Framework has evolved from SNMPv1 , through SNMPv2, to SNMPv3 the definitions of each of

these architectural components have become richer and more clearly defined, but the fundamental architecture has
remained consistent.

The main features of SNMPv2 compared to SNMPv1 are;

e Theget - bul k operation for transferring large amounts of data.

* Enhanced error codes.

* A more precise language for MIB specification

The standard documents that define SNMPv2 are incomplete, in the sense that they do not specify how an SNMPv2
message looks like. The message format and security issues are left to a special Administrative Framework. One

such framework isthe Community-based SNMPv2 Framework (SNM Pv2c), which uses the same message format and
framework as SNMPv1. Other experimental frameworks as exist, e.g. SNMPv2u and SNMPv2*,

The SNM Pv3 specifications take a modular approach to SNMP. All modules are separated from each other, and can
be extended or replaced individually. Examples of modules are M essage definition, Security and Access Control. The
main features of SNMPv3 are:

» Encryption and authentication is added.

» MIBsfor agent configuration are defined.

All these specifications are commonly referred to as "SNMPv3", but it is actually only the Message module, which
defines a new message format, and Security module, which takes care of encryption and authentication, that cannot
be used with SNMPv1 or SNMPv2c. In thisversion of the agent toolkit, all the standard MIBsfor agent configuration
are used. Thisincludes MIBs for definition of management targets for notifications. These MIBs are used regardless
of which SNMP version the agent is configured to use.

The extensible agent in this toolkit understands the SNMPv1, SNMPv2c and SNMPv3. Recall that SNMP consists
of two separate parts, the MIB definition language (SMI), and the protocol. On the protocol level, the agent can be
configured to speak v1, v2c, v3 or any combination of them at the same time, i.e. av1 request gets an v1 reply, av2c

4 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

request getsav2c reply, and av3 request getsav3 reply. Onthe MIB level, the MIB compiler can compile both SM1v1
and SMIv2 MIBs. Once compiled, any of the formats can beloaded into the agent, regardl ess of which protocol version
the agent is configured to use. This means that the agent translates from v2 notifications to v1 traps, and vice versa.
For example, v2 MIBs can be loaded into an agent that speaks v1 only. The procedures for the tranglation between
the two protocols are described in RFC 1908 and RFC 2089.

In order for an implementation to make full use of the enhanced SNMPv2 error codes, it is essential that the
instrumentation functions always return SNMPv2 error codes, in case of error. These are trandated into the
corresponding SNMPv1 error codes by the agent, if necessary.

The trandation from an SMIvl MIB to an SNMPv2c or SNMPv3 reply is always very straightforward, but
the trandation from a v2 MIB to a v1 reply is somewhat more complicated. There is one data type in SMIv2,
called Count er 64, that an SNMPv1 manager cannot decode correctly. Therefore, an agent may never send a
Count er 64 object to an SNMPv1 manager. The common practice in these situations is to simple ignore any
Count er 64 objects, when sending areply or atrap to an SNMPv1 manager. For example, if an SNMPv1 manager
triesto GET an object of type Count er 64, hewill get anoSuchNane error, while an SNMPv2 manager would
get acorrect value.

1.2.3 Operation
The following steps are needed to get a running agent:

e Writeyour MIB in SMI in atext file.

e Write the instrumentation functions in Erlang and compile them.

e Put their namesin the association file.

* Runthe MIB together with the association file through the MIB compiler.
e Configure the application (agent).

* Start the application (agent).

e Load the compiled MIB into the agent.

Thefiguresin this section illustrate the steps involved in the development of an SNMP agent.

MIB in ASN.1 file.mity
eyaContact OBJECT-TYPE Association file file.funcs
SYMTAX DisplayString isysContact, [mymod, sysCFung, [1}).
MIE
Compiler

Einawl file.bin
Representation
Figure 2.1: MIB Compiler Principles

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 5

1.2 Agent Functional Description

The compiler parsesthe SMI file and associ ates each table or variable with an instrumentation function (see the figure
MIB Compiler Principles). The actual instrumentation functionsare not needed at MIB compiletime, only their names.

Thebinary output file produced by the compiler isread by the agent at M1B load time (seethefigure Starting the Agent).
The instrumentation is ordinary Erlang code which isloaded explicitly or automatically the first timeit is called.

Instrumentation mymod. beam
sysCPFunciget, ...] -=
< Ccodex;
Binary | file.bin aysCFunci{set, ...) -»
Fepresentation <codex,

Figure 2.2: Starting the Agent

The SNMP agent system consists of one Master Agent and optional sub-agents. The Master Agent can be seen as a
special kind of sub-agent. It implements the core agent functionality, UDP packet processing, type checking, access
control, trap distribution, and so on. From a user perspective, it isused as an ordinary sub-agent.

Sub-agents are only needed if your application requires special support for distribution from the SNMP toolkit. A
sub-agent can also be used if the application requires a more complex set transaction scheme than is found in the

master agent.
The following illustration shows how a system can look in runtime.

6 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

_ _Node3d _
Node 1 | !
------------- T I Appl, !
Appl | B '
1 Appl. | :

Standard

FJ
///p
'//'wg_
&

e
|
= |

o
oo

i
R
1 I

U ——— |

/r
Erl Erl
Mle ' T“g Distributed Erlang r Elmg

Metwaork
Figure 2.3: Architecture

A typical operation could include the following steps:

e The Manager sends arequest to the Agent.
e The Master Agent decodes the incoming UDP packet.

e The Master Agent determines which items in the request that should be processed here and which items should
be forwarded to its subagent.

e Step 3isrepeated by al subagents.

» Each sub-agent calls the instrumentation for its loaded MIBs.

« Theresults of calling the instrumentation are propagated back to the Master Agent.

» Theanswer to the request is encoded to a UDP Protocol Data Unit (PDU).

The sequence of steps shown is probably more complex than normal, but it illustrates the amount of functionality
which is available. The following points should be noted:

e An agent can have many MIBs loaded at the same time.

» Sub-agents can a so have sub-agents. Each sub-agent can have an arbitrary number of child sub-agents
registered, forming a hierarchy.

e OneMIB can communicate with many applications.
e Instrumentation can use Distributed Erlang to communicate with an application.

Most applications only need the Master Agent because an agent can have multiple MIBs loaded at the same time.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 7

1.2 Agent Functional Description

1.2.4 Sub-agents and MIB Loading

Since applications tend to be transient (they are dynamically loaded and unloaded), the management of these
applications must be dynamic as well. For example, if we have an equipment MIB for arack and different MIBs for
boards, which can beinstalled in the rack, the MIB for acard should be loaded when the card isinserted, and unloaded
when the card is removed.

In this agent system, there are two ways to dynamicaly install management information. The most common way
isto load an MIB into an agent. The other way is to use a sub-agent, which is controlled by the application and is
able to register and unregister itself. A sub-agent can register itself for managing a sub-tree (not to be mixed up with
erl ang: r egi st er). The sub-tree is identified by an Object Identifier. When a sub-agent is registered, it receives
all requests for this particular sub-tree and it is responsible for answering them. It should also be noted that a sub-
agent can be started and stopped at any time.

Compared to other SNMP agent packages, there is a significant difference in this way of using sub-agents. Other
packages hormally use sub-agents to load and unload MIBsin run-time. In Erlang, it is easy to load code in run-time
and it is possible to load an MIB into an existing sub-agent. It is not necessary to create a new process for handling
anew MIB.

Sub-agents are used for the following reasons:

* to provide amore complex set-transaction scheme than master agent

e toavoid unnecessary process communication

e to provide amore lightweight mechanism for loading and unloading MIBs in run-time
* to provide interaction with other SNMP agent toolkits.

Refer to the chapter Advanced Agent Topicsin this User's Guide for more information about these topics.

The communication protocol between sub-agents is the normal message passing which is used in distributed Erlang
systems. Thisimplies that sub-agent communication is very efficient compared to SMUX, DPI, AgentX, and similar
protocols.

1.2.5 Contexts and Communities

A context is a collection of management information accessible by an SNMP entity. An instance of a management
object may exist in more than one context. An SNMP entity potentially has access to many contexts.

Each managed object can exist in many instanceswithin a SNMP entity. To identify theinstances, specified by an MIB
module, a method to distinguish the actual instance by its 'scope’ or context is used. Often the context is a physical or
alogica device. It can include multiple devices, a subset of a single device or a subset of multiple devices, but the
context is always defined as a subset of a single SNMP entity. To be able to identify a specific item of management
information within an SNMP entity, the context, the object type and its instance must be used.

For example, the managed object type i f Descr from RFC1573, is defined as the description of a network
interface. To identify the description of device-X's first network interface, four pieces of information are needed:
the snmpEnginelD of the SNMP entity which provides access to the management information at device-X, the
cont ext Nane (device-X), the managed object type (i f Descr), and theinstance ("1").

In SNMPv1 and SNMPv2c, the community string in the message was used for (at least) three different purposes:

e toidentify the context

* to provide authentication

e toidentify aset of trap targets

In SNMPv3, each of these usage areas has its own unique mechanism. A context is identified by the name of the

SNMP entity, cont ext Engi nel D, and the name of the context, cont ext Nare. Each SNM Pv3 message contains
values for these two parameters.

8 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

There is a MIB, SNMP-COMMUNITY-MIB, which maps a community string to a cont ext Engi nel D and
cont ext Name. Thus, each message, an SNMPv1, SNMPv2c or an SNMPv3 message, always uniquely identifies
a context.

For an agent, the cont ext Engi nel Didentified by a received message, is always equal to the snnpEngi nel D
of the agent. Otherwise, the message was not intended for the agent. If the agent is configured with more than one
context, the instrumentation code must be able to figure out for which context the request was intended. There is a
function snipa: cur r ent _cont ext / O provided for this purpose.

By default, the agent has no knowledge of any other contexts than the default context, " " . If it is to support more
contexts, these must be explicitly added, by using an appropriate configuration file Agent Configuration Files.

1.2.6 Management of the Agent

Thereis aset of standard MIBs, which are used to control and configure an SNMP agent. All of these MIBs, with the
exception of the optional SNMP-PROXY -MIB (which is only used for proxy agents), are implemented in this agent.
Further, it is configurable which of these MIBs are actually loaded, and thus made visible to SNMP managers. For
example, in a non-secure environment, it might be a good idea to not make MIBs that define access control visible.
Note, the datathe MIBs define is used internally in the agent, even if the MIBs not are |oaded. This chapter describes
these standard M1Bs, and some aspects of their implementation.

Any SNMP agent must implement the sy st emgroup and thesnnp group, defined in MIB-I1. The definitions of these
groups have changed from SNMPv1 to SNMPv2. MIBsand implementationsfor both of these versionsare Provided in
the distribution. The MIB file for SNMPv1iscaled STANDARD-MIB, and the corresponding for SNMPv2 is called
SNMPv2-MIB. If the agent is configured for SNMPv1 only, the STANDARD-MIB is loaded by default; otherwise,
the SNMPv2-MIB is loaded by default. It is possible to override this default behavior, by explicitly loading another
version of this MIB, for example, you could choose to implement the union of all objectsin these two MIBs.

An SNMPv3 agent must implement the SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB. These MIBs are loaded
by default, if the agent is configured for SNMPv3. These MIBs can be loaded for other versions as well.

There are five other standard MIBs, which also may be loaded into the agent. These MIBs are:

* SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB, which defines managed objects for configuration of
management targets, i.e. receivers of notifications (traps and informs). These MIBs can be used with any SNMP
version.

« SNMP-VIEW-BASED-ACM-MIB, which defined managed objects for access control. This MIB can be used
with any SNMP version.

e SNMP-COMMUNITY-MIB, which defines managed objects for coexistence of SNMPv1 and SNMPv2c with
SNMPv3. ThisMIB isonly useful if SNMPv1 or SNMPv2c is used, possibly in combination with SNMPv3.

* SNMP-USER-BASED-SM-MIB, which defines managed objects for authentication and privacy. This MIB is
only useful with SNMPv3.

All of these MIBs should beloaded into the M aster Agent. Onceloaded, these MIBsareawaysavailablein all contexts.

The ASN.1 code, the Erlang source code, and the generated . hr | filesfor them are provided in the distribution and
are placed in the directoriesm bs, src,andi ncl ude, respectively, in the snnp application.

The. hr| files are generated with snnpc: mi b_to_hrl/ 1. Include these files in your code as in the following
example:

-include lib("snmp/include/SNMPv2-MIB.hrl").

Theinitial valuesfor the managed objects defined in these tables, are read at start-up from a set of configuration files.
These are described in Configuration Files.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 9

1.2 Agent Functional Description

STANDARD-MIB and SNMPv2-MIB

These MIBs containthesnp- and sy st emgroupsfrom MIB-11 whichisdefined in RFC1213 (STANDARD-MIB)
or RFC1907 (SNMPv2-MIB). They are implemented in the snnp_st andar d_ni b module. The snnp counters
all reside in volatile memory and the syst emand snnpEnabl eAut henTr aps variables in persistent memory,
using the SNMP built-in database (refer to the Reference Manual, section snnp, module snnpa_| ocal _db for
more details).

If another implementation of any of these variablesisneeded, e.g. to storethe persistent variablesin aMnesia database,
an own implementation of the variables must be made. That MIB will be compiled and loaded instead of the default
MIB. The new compiled MIB must have the same name as the original MIB (i.e. STANDARD-MIB or SNMPv2-
MIB), and be located in the SNMP configuration directory (see Configuration Files.)

One of these MIBsisawaysloaded. If only SNMPv1 isused, STANDARD-MIB isloaded, otherwise SNMPv2-MIB
isloaded.

Data Types

There are some new data typesin SNMPv2 that are useful in SNMPv1 as well. In the STANDARD-MIB, three data
typesaredefined, RowSt at us, Tr ut hVal ue and Dat e AndTi e. Thesedatatypesareoriginaly defined astextual
conventionsin SNMPv2-TC (RFC1903).

SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

The SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB define additional read-only managed objects, which is used
in the generic SNMP framework defined in RFC2271 and the generic message processing and dispatching module
defined in RFC2272. They are generic in the sense that they are not tied to any specific SNMP version.

The objectsin these MIBs are implemented in the modulessnnp_f r anewor k_m b andsnnp_st andar d_ni b,
respectively. All objects reside in volatile memory, and the configuration files are always reread at start-up.

If SNMPv3is used, these MIBs are loaded by defaullt.

SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB

The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB define managed objects for configuration of
notification receivers. They are described in detail in RFC2273. Only a brief description is given here.

All tables in these MIBs have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically havestoragetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

These MIBs are not loaded by default.
snmpNotifyTable

An entry in the snnpNot i f yTabl e selects a set of management targets, which should receive notifications, as
well as the type (trap or inform) of notification that should be sent to each selected management target. When an
application sends a notification using the function send_noti fi cation/5 or the function send_t r ap the
parameter Not i f yName, specified in the call, is used as an index in the table. The notification is sent to the
management targets selected by that entry.

snmpTargetAddrTable

An entry in the snnpTar get Addr Tabl e defines transport parameters (such as IP address and UDP
port) for each management target. Each row in the snnpNot i f yTabl e refers to potentialy many rows
in the snnpTar get Addr Tabl e. Each row in the snnpTar get Addr Tabl e refers to an entry in the
snnpTar get Par ansTabl e.

10 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

snmpTargetParamsTable

An entry in the snnpTar get Par anms Tabl e defines which SNMP version to use, and which security parameters
to use.

Which SNMP version to use is implicitly defined by specifying the Message Processing Model. This version of the
agent handles the modelsv1, v2c andv3.

Each row specifies which security model to use, along with security level and security parameters.

SNMP-VIEW-BASED-ACM-MIB

The SNMP-VIEW-BASED-ACM-MIB defines managed objects to control access to the the managed objects for the
managers. The View Based Access Control Module (VACM) can be used with any SNMP version. However, if it
is used with SNMPv1 or SNMPv2c, the SNMP-COMMUNITY -MIB defines additional objects to map community
stringsto VACM parameters.

All tables in this MIB have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol at i | e rowsarelost. The configuration files are not read at restart by default.

ThisMIB is not loaded by default.
VACM isdescribed in detail in RFC2275. Hereis only abrief description given.

The basic concept is that of a MIB view. An MIB view is a subset of all the objects implemented by an agent. A
manager has access to a certain MIB view, depending on which security parameters are used, in which context the
request is made, and which type of request is made.

The following picture gives an overview of the mechanism to select an MIB view:

securityhd odel

who groupMame
securityMame

where contexaMare

viewMame

secuityhd odel

who
secmitylevel

why view Type (readferrite/notify)

Figure 2.4: Overview of the mechanism of MIB selection

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 11

1.2 Agent Functional Description

vacmContextTable

ThevacntCont ext Tabl e isaread-only table that lists al available contexts.
vacmSecurityToGroupTable

ThevacnBSecurityToG oupTabl e mapsasecurityMdel andasecurityNane toagroupNane.
vacmAccessTable

ThevacmAccessTabl e mapsthe gr oupNane (foundinvacnBSecurit yToG oupTabl e), cont ext Nane,
securityModel ,andsecuritylLevel toan MIB view for each type of operation (read, write, or notify). The
MIB view is represented as avi ewNane. The definition of the MIB view represented by the vi ewNane is found
inthevacnVi ewTr eeFami | yTabl e

vacmViewTreeFamilyTable

ThevacnmVi ewTr eeFam | yTabl e isindexed by the vi ewNane, and defines which objects are included in the
MIB view.

The MIB definition for the table |ooks as follows:

VacmViewTreeFamilyEntry ::= SEQUENCE

{
vacmViewTreeFamilyViewName SnmpAdminString,
vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
vacmViewTreeFamilyMask OCTET STRING,
vacmViewTreeFamilyType INTEGER,
vacmViewTreeFamilyStorageType StorageType,
vacmViewTreeFamilyStatus RowStatus

}

INDEX { vacmViewTreeFamilyViewName,
vacmViewTreeFamilySubtree

}

Each vacnVi ewTr eeFani | yVi ewNane refersto acollection of sub-trees.
MIB View Semantics

AnMIB view isacollection of included and excluded sub-trees. A sub-treeisidentified by an OBJECT IDENTIFIER.
A mask is associated with each sub-tree.

For each possible MIB object instance, the instance belongs to a sub-tree if:

e the OBJECT IDENTIFIER name of that MIB object instance comprises at least as many sub-identifiers as does
the sub-tree, and

» each sub-identifier in the name of that MIB object instance matches the corresponding sub-identifier of the sub-
tree whenever the corresponding bit of the associated mask is 1 (0 isawild card that matches anything).

Membership of an object instancein an MIB view is determined by the following algorithm:

« |f an MIB object instance does not belong to any of the relevant sub-trees, then the instance is not in the MIB
view.

« |f an MIB object instance belongs to exactly one sub-tree, then the instanceis included in, or excluded from, the
relevant MIB view according to the type of that entry.

« |f an MIB object instance belongs to more than one sub-tree, then the sub-tree which comprises the greatest
number of sub-identifiers, and is the lexicographically greatest, is used.

12 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

If the OBJECT IDENTIFIER is longer than an OBJECT IDENTIFIER of an object type in the MIB, it refers to
object instances. Because of this, it is possible to control whether or not particular rowsin atable shall be visible.

SNMP-COMMUNITY-MIB

The SNMP-COMMUNITY-MIB defines managed objects that is used for coexistence between SNMPv1 and
SNMPv2c with SNMPv3. Specifically, it contains objects for mapping between community strings and version-
independent SNM P message parameters. In addition, this MIB provides a mechanism for performing source address
validation on incoming requests, and for selecting community strings based on target addresses for outgoing
notifications.

All tables in this MIB have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

This MIB is not loaded by defauilt.

SNMP-USER-BASED-SM-MIB
The SNMP-USER-BASED-SM-MIB defines managed objects that is used for the User-Based Security Model.

All tables in this MIB have a column of type St or ageType. The value of the column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol at i | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

This MIB is not loaded by defaullt.

OTP-SNMPEA-MIB

The OTP-SNMPEA-MIB was used in earlier versions of the agent, before standard MIBs existed for access control,
MIB views, and trap target specification. All objectsin this MIB are now obsolete.

1.2.7 Notifications

Notifications are defined in SMIv1 with the TRAP-TY PE macro in the definition of an MIB (see RFC1215). The
corresponding macro in SMIv2isNOTIFICATION-TY PE. When an application decidesto send anotification, it calls
one of the following functions:

snmpa:send notification(Agent, Notification, Receiver
[, NotifyName, ContextName, Varbinds])
snmpa:send trap(Agent, Notification, Community [, Receiver, Varbinds])

providing the registered name or processidentifier of the agent wherethe M1B, which definesthe notification isloaded
and the symbolic name of the notification.

If thesend_noti fication/ 3, 4 function is used, al management targets are selected, as defined in RFC2273.
The Recei ver parameter defines where the agent should send information about the delivery of inform requests.

If thesend_noti ficati on/5 functionisused, an Not i f yName must be provided. This parameter isused as an
index inthesnnpNot i f yTabl e, and the management targets defined by that single entry is used.

The send_notificati on/ 6 function is the most genera version of the function. A Cont ext Nane must be
specified, from which the naotification will be sent. If this parameter is not specified, the default context (" ") is used.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 13

1.2 Agent Functional Description

Thefunctionsend_t r ap iskept for backwards compatibility and should not be used in new code. Applications that
use this function will continue to work. The snnpNot i f yNane is used as the community string by the agent when
anotification is sent.

Notification Sending

The simplest way to send a notification is to call the function snnpa: send_noti fi cati on(Agent,

Notification, no_receiver). Inthiscase the agent performs a get-operation to retrieve the object values
that are defined in the notification specification (with the TRAP-TYPE or NOTIFICATION-TYPE macros). The
notification is sent to al managers defined in the target and notify tables, either unacknowledged as traps, or
acknowledged as inform requests.

If the caller of the function wants to know whether or not acknowledgments are received for a certain notification
(provided it is sent as an inform), the Recei ver parameter can be specified as{ Tag, ProcessNane} (refer
to the Reference Manual, section snmp, module snnp for more details). In this case, the agent send a message
{snnp_notification, Tag, {got _response, ManagerAddr}} or{snnp_notification, Tag,

{no_response, Manager Addr}} for each management target.

Sometimesit is not possible to retrieve the values for some of the objects in the notification specification with a get-
operation. However, they are knownwhenthesend_noti fi cati on functioniscalled. Thisisthe caseif an object
isan element in atable. It is possible to give the values of some objects to the send_not i fi cati on function
snnpa: send_notification(Agent, Notification, Receiver, Varbinds). In thisfunction,
Var bi nds isalist of Var bi nd, where each Var bi nd is one of:

e {Variable, Value},whereVari abl e isthesymbolic name of ascalar variable referred to in the
notification specification.

e {Colum, Row ndex, Val ue},whereCol um isthe symbolic name of a column variable. Rowl ndex
isalist of indices for the specified element. If thisisthe case, the OBJECT IDENTIFIER sent in the trap isthe
Rowl ndex appended to the OBJECT IDENTIFIER for the table column. Thisisthe OBJECT IDENTIFIER
which specifies the element.

« {AD, Value},whered Disthe OBJECT IDENTIFIER for an instance of an object, scalar variable or
column variable.

For example, to specify that sysLocat i on should have the value " upst ai r s" in the notification, we could use
one of:

e {syslLocation, "upstairs"} or
« {[1,3,6,1,2,1,1,6,0], "upstairs"}

It is also possible to specify names and values for extra variables that should be sent in the notification, but were not
defined in the notification specification.

The notification is sent to all management targets found in the tables. However, make sure that each manager has
accessto the variablesin the notification. If avariable is outside a manager's MIB view, this manager will not receive
the notification.

By definition, it is not possible to send objects with ACCESS not - accessi bl e in notifications. However,
historically this is often done and for this reason we alow it in notification sending. If a variable has ACCESS
not - accessi bl e, the user must provide a value for the variable in the Var bi nds list. It is not possible for
the agent to perform a get-operation to retrieve this value.

14 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.3 Manager Functional Description

Notification Filters

Itis possibleto add notification filter sto an agent. These filters will be called when a notification isto be sent. Their
purpose is to allow modification, suppression or other type of actions.

A notification filter isamodule implementing the snmpa._notification_filter behaviour. A filter is added/deleted using
the functions: snmparegister_notification_filter and snmpa:unregister_notification filter.

Unless otherwise specified, the order of the registered filters will be the order in which they are registered.

Sub-agent Path

If avaluefor anobjectisnot giventothesend_not i f i cat i on function, the sub-agent will perform aget-operation
to retrieve it. If the object is not implemented in this sub-agent, its parent agent tries to perform a get-operation to
retrieveit. If the object isnot implemented in this agent either, it forwards the object to its parent, and so on. Eventually
the Master Agent isreached and at this point all unknown object values must be resolved. If some object is unknown
even to the Master Agent, thisisregarded as an error and is reported with acall touser _er r/ 2 of the error report
module. No notifications are sent in this case.

For agiven natification, the variables, which are referred to in the notification specification, must be implemented by
the agent that has the MIB loaded, or by some parent to this agent. If not, the application must provide values for the
unknown variables. The application must also provide values for al elementsin tables.

1.2.8 Discovery

Thesender isauthoritativefor messages containing payload which doesnot expect aresponse (for example SNM Pv2-
Trap, Response or Report PDU).

Thereceiver isauthoritative for messages containing payload which expects aresponse (for example Get, GetNext,
Get-Bulk, Set or Inform PDU).

The agent can both perform and respond to discovery.
The agent responds to discovery autonomously, without interaction by the user.

Initiating discovery towards a manager is done by calling the discovery function. The Engi nel d field of the target
(manager) entry in the target_addr.conf file has to have the value di scover y. Note that if the manager does not
respond, the Ti meout and Ret r yCount fields decide how long the function will hang before it returns.

Discovery can only be performed towards one manager at atime.

1.3 Manager Functional Description

1.3.1 Features

The manager provided with the tool is a lightweight manager that basically provides a means to communicate with
agents.

It does not really implement any management capabilities by itself. That is up to the user.

A user inthiscontext isbasically amodule implementing the snmpm_user behaviour. A user can issue snmp requests
and receive notification/traps.

Agents to be accessed by the manager needs to be registered by a user. Once registered, they can be accessed by all
registered users.

Notifications/traps from an agent is delivered to the user that did the registration.
Any message from an agent that is not registered is delivered to the default user.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 15

1.4 The MIB Compiler

By default, the default user is set to the snnpm_user _def aul t module, which simply sends an info message
to the error_logger. It is however highly recommended that this module be replaced by another that does something
useful (see configuration params for more info).

When using version 3, then (at least one) usm user hasto be registered.

Requests can beissued in two different ways. Synchronous (seesync_set, sync_get, sync_get_next and sync_get_bulk)
and asynchronous (see async_set, async_get, async_get_next and async_get_bulk). With synchronous the snmp reply
is returned by the function. With asynchronous, the reply will instead be delivered through a call to one of the
handl e_pdu callback function defined by the handle_pdu behaviour.

1.3.2 Operation

The following steps are needed to get the manager running:

» [optional] Implement the default user.
e Implement the user(s).

» Configure the application (manager).
e Start the application (manager).

* Register the user(s).

* Theuser(s) register their agents.

1.3.3 MIB loading

Itis possible to load mibs into the manager, but thisis not necessary for normal operation, and not recommended.

1.4 The MIB Compiler

The chapter The M1B Compiler describes the MIB compiler and contains the following topics:
e Operation

e Import

» Consistency checking between MIBs

e hrl file generation

e Emacsintegration

» Deviations from the standard

When importing M1Bs, ensure that the imported MIBs as well asthe importing MIB are compiled using the same
version of the SNM P-compiler.

1.4.1 Operation

The MIB must be written as atext filein SMIv1 or SMIv2 using an ASN.1 notation before it will be compiled. This
text file must have the same name as the MIB, but with the suffix . mi b. Thisis necessary for handling the | MPORT
statement.

The association file, which contains the names of instrumentation functions for the MIB, should have the suffix
. funcs. If thecompiler does not find the association file, it gives awarning message and uses default instrumentation
functions. (See Default Instrumentation for more details).

The MIB compiler is started with acall to snipc: conpi | e(<mi bnane>) . For example:

16 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.4 The MIB Compiler

snmpc:compile("RFC1213-MIB").

The output isanew filewhichis called <ni bnane>. bi n.

The MIB compiler understands both SMIvl and SMIv2 MIBs. It uses the MODULE-IDENTITY statement to
determinate if the MIB iswritten in SMI version 1 or 2.

1.4.2 Importing MIBs

The compiler handles the | MPORT statement. It isimportant to import the compiled file and not the ASN.1 (source)
file. A MIB must be recompiled to make changes visible to other MIBs importing it.

The compiled files of the imported MIBs must be present in the current directory, or a directory in the current path.
The pathis supplied withthe{i , Pat h} option, for example:

snmpc:compile("MY-MIB",
[{i, ["friend mibs/", "../standard mibs/"1}1).

It is also possible to import MIBs from OTP applicationsinan " i ncl ude_l i b" like fashion with thei | option.
Example:

snmpc:compile("MY-MIB",
[{il, ["snmp/priv/mibs/", "myapp/priv/mibs/"1}1).

findsthelatest version of thesnnp and my app applicationsin the OTP system and uses the expanded paths asinclude
paths.

Note that an SMIv2 MIB can import an SMIv1l MIB and vice versa

The following MIBs are built-ins of the Erlang SNMP compiler: SNMPv2-SMI, RFC-1215, RFC-1212, SNMPv2-
TC, SNMPv2-CONF, and RFC1155-SMI. They cannot therefore be compiled separately.

1.4.3 MIB Consistency Checking

When an MIB is compiled, the compiler detects if several managed objects use the same OBJECT | DENTI FI ER
If that is the case, it issues an error message. However, the compiler cannot detect Oid conflicts between different
MIBs. These kinds of conflicts generate an error at load time. To avoid this, the following function can be used to
do consistency checking between MIBs:

erl>snmpc:is consistent(ListOfMibNames).

Li st O M bNanes isalist of compiled MIBs, for example[" RFC1213- M B", " MY-M B"] . Thefunction also
performs consistency checking of trap definitions.

1.4.4 .hrl File Generation

It ispossibleto generatean . hr | file which contains definitions of Erlang constants from a compiled MIB file. This
file can then be included in Erlang source code. The file will contain constants for:

e object Identifiersfor tables, table entries and variables
e column numbers

e enumerated values

e default valuesfor variables and table columns.

Use the following command to generate a .hrl file from an MIB:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 17

1.4 The MIB Compiler

erl>snmpc:mib_to hrl(MibName) .

1.4.5 Emacs Integration

With the Emacs editor, thenext - er r or (G- X ™) function can be used indicate where a compilation error occurred,
provided the error message is described by aline number.

UseM x conpi | e to compile an MIB from inside Emacs, and enter:

erl -s snmpc compile <MibName> -noshell

An example of <M bNane>isRFC1213- M B.

1.4.6 Compiling from a Shell or a Makefile

Theer | ¢ commands can be used to compile SNMP MIBs. Example:

erlc MY-MIB.mib

All the standard er | ¢ flags are supported, e.g.

erlc -I mymibs -o mymibs -W MY-MIB.mib

The flags specific to the MIB compiler can be specified by using the + syntax:

erlc +'{group check, false}' MY-MIB.mib

1.4.7 Deviations from the Standard

In some aspects the Erlang MIB compiler does not follow or implement the SMI fully. Here are the differences:

Tables must be written in the following order: t abl eChj ect , ent ryQhj ect, col uimi, ..., col unmN (in
order).

Integer values, for example in the SI ZE expression must be entered in decimal syntax, not in hex or bit syntax.
Symbolic names must be unique within aMIB and within a system.

Hyphens are allowed in SMIv2 (a pragmatic approach). The reason for thisis that according to SM1v2, hyphens
are alowed for objects converted from SMIv1, but not for others. Thisisimpossible to check for the compiler.

If aword isakeyword in any of SMIv1 or SMIv2, it isakeyword in the compiler (deviates from SMIv1 only).
Indexes in atable must be objects, not types (deviates from SMiv1 only).

A subset of all semantic checks on types areimplemented. For example, strictly the Ti meTi cks may not be sub-
classed but the compiler allowsthis (standard M1Bs must pass through the compiler) (deviatesfrom SMIv2 only).

TheM B. Obj ect syntax is not implemented (since all objects must be unique anyway).
Two different names cannot define the same OBJECT IDENTIFIER.

The type checking in the SEQUENCE construct is non-strict (i.e. subtypes may be specified). The reason for this
isthat some standard MIBs use this.

18 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

* A definition has normally a status field. When the status field has the value deprecated, then the MIB-compiler
will ignore this definition. With the MIB-compiler option { depr ecat ed, t r ue} the MIB-compiler does not
ignore the deprecated definitions.

e Anobject hasa DESCRIPTIONS field. The descriptions-field will not be included in the compiled mib by
default. In order to get the description, the mib must be compiled with the option descri pti on.

1.5 Running the application

The chapter Running the application describes how the application is configured and started. The topics include:
« configuration directories and parameters

« modifying the configuration files

e dtarting the application (agent and/or manager)

* debugging the application (agent and/or manager)

Refer also to the chapter(s) Definition of Agent Configuration Files and Definition of Manager Configuration Files
which contains more detailed information about the agent and manager configuration files.

1.5.1 Configuring the application
The following two directories must exist in the system to run the agent:

« the configuration directory stores all configuration files used by the agent (refer to the chapter Definition of
Agent Configuration Files for more information).

e thedatabasedirectory storestheinterna database files.
The following directory must exist in the system to run the manager:

« theconfiguration directory stores all configuration files used by the manager (refer to the chapter Definition of
Manager Configuration Files for more information).

* thedatabasedirectory storestheinternal database files.

The agent and manager uses (application) configuration parameters to find out where these directories are located.

The parameters should be defined in an Erlang system configuration file. The following configuration parameters are
defined for the SNMP application:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 19

1.5 Running the application

agent options() = [agent option()]
agent option() = {restart type,

{agent_type,
{agent verbosity,
{versions,
{discovery,
{gb_max_vbs,
{priority,

{multi threaded,
{db dir,

{db_init error,
{local db,

{net if,

{mibs,

{mib storage,
{mib_server,
{audit trail log,

restart type()}
agent_type()}
verbosity()}
versions ()}

agent _discovery()}
gb _max_vbs()}
priority()}

multi threaded()}
db dir()}

db init error()}
local db()}
agent net if()}
mibs ()}

mib storage()}

mib server()}
audit trail log()}

{error_report mod, error _report mod()}

{note store, note store()}

{symbolic_store, symbolic store()}

{target cache, target cache()}

{config, agent config()}
manager _options() = [manager option()]

manager _option() = {restart type, restart type()}
(

{net_if, manager net if()}
{server, server()}

{note store, note store()}
{config, manager _config()}

{inform_request behaviour, manager irb()}

{mibs, manager _mibs()}
{priority, priority()}

{audit trail log, audit trail log()}
{versions, versions()}

{def user _mod,
{def user_data,

def user module()
def user data()}

Agent specific config options and types:
agent _type() = master | sub <optional >
If mast er , one master agent is started. Otherwise, no agents are started.
Default ismast er .
agent _di scovery() = [agent _discovery_opt()] <optional >

agent _di scovery_opt() = {term nating, agent_termni nating_discovery_opts()} |
{originating, agent _originating discovery opts()}

Thet er m nat i ng options effects discovery initiated by a manager.
Theori gi nat i ng options effects discovery initiated by this agent.
For defaults see the optionsin agent _di scovery_opt ().

agent _term nati ng_di scovery_opts()
<opti onal >

= [agent _term nating_di scovery_opt ()]

agent _term nating_di scovery_opt () = {enabl e, boolean()} | {stage2, discovery
| plain} | {trigger_usernane, string()}

These are options effecting discovery t er m nat i ng inthis agent (i.e. initiated by a manager).
The default values for thet er mi nat i ng discovery options are:

20 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

e enabletrue
e dtage2: di scovery
e trigger_username: " "

agent _originating_di scovery opts() = [agent_originating discovery opt()]
<opti onal >

agent _originating_di scovery_opt() = {enable, bool ean()}
These are options effecting discovery or i gi nat i ng in this agent.
The default valuesfor the or i gi nat i ng discovery options are:

e endbletrue
mul ti _threaded() = bool () | extended<optional >

If t r ue (or ext ended), the agent is multi-threaded, with one thread for each get request.
The value ext ended means that a special 'process is also created intended to handle all notifications.

e true - One worker dedicated to 'set-requests' and one (main) worker for all other requests (‘get-request'
and notifications).

If the 'main’ worker isbusy, atemporary processis spawned to handle that job (‘get-request’ or naotification).

* ext ended - One worker dedicated to 'set-requests, one worker dedicated to notifications and one (main)
worker for all 'get-requests.

If the 'main’ worker is busy, atemporary process is spawned to handle that 'get-request'.

Even with multi-threaded set to ext ended there is till arisk for 'reorder' when sending inform-requsts,
which require a response (and may therefore require resending).

Also, thereis of course no way to guarantee order once the package is on the network.

Default isf al se.

db_dir() = string() <mandatory>
Defines where the SNMP agent internal db files are stored.

gb_max_vbs() = pos_integer() | infinity <optional >
Defines the maximum number of varbinds allowed in a Get-BULK response.
Default is1000.

| ocal _db() = [local _db_opt()] <optional >

|l ocal _db_opt() = {repair, agent _repair()} | {auto_save, agent_auto_save()}
| {verbosity, verbosity()}

Defines options specific for the SNMP agent local database.
For defaults seethe optionsin| ocal _db_opt ().
agent _repair() = false | true | force <optional >

When starting snmpa_local_db it always tries to open an existing database. If f al se, and some errors occur, a
new database is created instead. If t r ue, an existing file will be repaired. If f or ce, the table will be repaired
even if it was properly closed.

Default ist r ue.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 21

1.5 Running the application

agent _auto_save() = integer() | infinity <optional >
The auto save interval. The tableis flushed to disk whenever not accessed for this amount of time.
Default is5000.

agent _net if() = [agent_net if _opt()] <optional>

agent _net if _option() = {nodule, agent net if nmodule()} | {verbosity,
verbosity()} | {options, agent net if_options()}

Defines options specific for the SNMP agent network interface entity.
For defaults seethe optionsinagent _net i f _opt ().
agent _net _if_nodul e() = aton() <optional >

Module which handles the network interface part for the SNMP agent. Must implement the
snmpa_network_interface behaviour.

Defaultissnnpa_net i f.
agent _net if _options() = [agent_net _if _option()] <optional >

agent _net _i f_option() = {bind_to, bind_to()} | { sndbuf,
sndbuf ()} | {recbuf, recbuf ()} | {no_reuse, no_reuse()} |
{reg_limt, req_limt()} | {filter, agent_net_if_filter_options()} |
{open_err filters, agent net if open_err filters()} | {extra_sock opts,

extra_socket _options()} | {inet_backend, inet_backend()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent _net _if_nodul e().

If the user has configured transports with options then those will take precedence over these options. See
agent information for more info.

For defaults seethe optionsinagent _net i f _option().
req limt() =integer() | infinity <optional >
Max number of simultaneous requests handled by the agent.
Defaultisi nfinity.
agent _net _if filter_options() = [agent_net if _filter_option()] <optional >
agent _net if _filter_option() = {nodule, agent_net if _filter_nodul e()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent _net if filter_nodul e().

For defaults seethe optionsinagent _net _if filter_option().
agent _net _if filter_nodule() = atom() <optional >

Module which handles the network interface filter part for the SNMP agent. Must implement the
snmpa_network_interface filter behaviour.

Defaultissnnpa_net _if_filter.
agent _net if_open_err filters() = [agent_net if_open_err_filter()] <optional >

agent _net if _open_err _filter() = atom()

22 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

During agent initiation, the transports UDP sockets are opened. If this operation fails, the net-if (and the agent)
failsto start (crash). This (filter) list contains error (reasons) that will make net-if fail "nicely”. This (filter) list,
is supposed to contain errors that can be returned by gen_udp:open/1,2. The effect is that any error returned by
gen_udp:open which *are* in this list, will be considered "non-fatal" and will only result in an info message,
rather than an error message. Net If, and the agent, will till crash, but will produce a less obnoxious message.

agent _mbs() = [string()] <optional>
Specifiesalist of MIBs (including path) that defineswhich MIBsareinitially loaded into the SNMP master agent.
Note that the following will always be |oaded:

¢ versionvl: STANDARD- M B
e version v2: SNVPv 2
e versionv3: SNVPv2, SNVP- FRAMEWORK- M B and SNVP- MPD- M B

Defaultis[] .
mb_storage() = [m b_storage_opt()] <optional >

m b_st orage_opt () = { modul e, m b_storage_nodul e()} | {options,
m b_storage_options()}

This option specifies how basic mib datais stored. This option is used by two parts of the snmp agent: The mib-
server and the symbolic-store.

Defaultis[{ rodul e, snnpa_ni b_storage _ets}].

m b _storage nodul e() = snnpa_nib data ets | snnpa_nib data dets |
snnpa_m b_data mesia | nodul e()

Defines the mib storage module of the SNMP agent as defined by the snmpa_mib_storage behaviour.

Several entities (i b- ser ver viatheitsdatamoduleand thesymnbol i c- st or e) of the snmp agent usesthis
for storage of miscellaneous mib related data data retrieved while loading a mib.

There are severa implementations provided with the agent: snnpa_mi b_storage_ets,
snnpa_m b_storage_det s andsnnpa_ni b_st or age_mmesi a.

Default moduleissnnpa_m b_st orage_ets.
m b_storage_options() = list() <optional>

This is implementation depended. That is, it depends on the module. For each module a specific set of options
are valid. For the module provided with the app, these options are supported:

e snnpa_nmb_storage_ets: {dir, filename()} | {action, keep | clear},
{checksum bool ean()}

e dir - If present, pointsto adirectory where afile to which al datain the etstable is"synced".
Also, when atableis opened thisfileisread, if it exists.

By default, thiswill not be used.
e acti on - Specifies the behaviour when a non-empty file isfound: Keep its content or clear it out.

Defaultiskeep.
¢ checksum- Definesif thefileis checksummed or not.

Default isf al se.

e snnpa_nmb_storage dets: {dir, filenane()} | {action, keep | clear},
{auto_save, default | pos_integer()} | {repair, force | boolean()}

e dir - Thismandatory option pointsto a directory where to place the file of a detstable.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 23

1.5 Running the application

e acti on - Specifies the behaviour when a non-empty file is found: Keep its content or clear it out.

Default iskeep.
e aut o_save - Defines the dets auto-save frequency.

Defaultisdef aul t .
e repair - Definesthe detsrepair behaviour.

Defaultisf al se.
e snnpa_m b_storage_mesi a:{action, keep | clear}, {nodes, [node()]}

e acti on - Specifies the behaviour when a non-empty, already existing, table: Keep its content or clear
it out.

Default iskeep.

¢ nodes - A list of node names (or an atom describing alist of nodes) defining where to open the table.
Its up to the user to ensure that mnesiais actually running on the specified nodes.

The following distinct values are recogni sed:

e [] -Trandated into alist of the own node: [node()]
« all -erlang: nodes()
e visible-erlang: nodes(visible)
e« connected-erl ang: nodes(connect ed)
e db_nodes - mesi a: system i nf o(db_nodes)
Default isthe result of thecall: er | ang: nodes() .

m b _server() = [mb_server_opt()] <optional>

m b_server_opt () = {m bentry_override, m bentry override()} |
{trapentry override, trapentry override()} | {verbosity, verbosity()} |
{cache, mbs cache()} | {data nodule, mb_server_data nodul e()}

Defines options specific for the SNMP agent mib server.
For defaults see the optionsinmi b_server _opt ().
m bentry_override() = bool () <optional >

If this value is false, then when loading a mib each mib- entry is checked prior to installation of the mib. The
purpose of the check isto prevent that the same symbolic mibentry name is used for different oid's.

Defaultisf al se.
trapentry_override() = bool () <optional >

If thisvaue is false, then when loading a mib each trap is checked prior to installation of the mib. The purpose
of the check isto prevent that the same symbolic trap nameis used for different trap's.

Defaultisf al se.
m b_server_data_nodul e() = snnpa_mi b_data_ tttn | nodul e() <optional >
Defines the backend data module of the SNMP agent mib-server as defined by the snmpa_mib_data behaviour.
At present only the default module is provided with the agent, snnpa_mi b_data tttn.
Default moduleissnnpa_mi b_data_tttn.
m bs_cache() = bool () | mibs_cache_opts() <optional >
Shall the agent utilize the mib server lookup cache or not.
Defaultist r ue (inwhich casethemi bs_cache_opt s() default values apply).

24 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

nm bs_cache_opts() = [mi bs_cache_opt()] <optional >

m bs_cache_opt () = {aut ogc, m bs_cache_aut ogc()} | {gclimt,
m bs_cache_gclimt()} | {age, m bs_cache_age()}

Defines options specific for the SNMP agent mib server cache.
For defaults seethe optionsinm bs_cache_opt () .
m bs_cache_aut ogc() = bool () <optional >
Definesif themib server shall perform cache gc automatically or leaveit to the user (seegc_mibs cache/0,1,2,3).
Defaultist r ue.
m bs_cache_age() = integer() > 0 <optional >

Defines how old the entries in the cache will be allowed to become before they are GC'ed (assuming GC is
performed). Each entry in the cache is "touched" whenever it is accessed.

The age is defined in milliseconds.
Defaultis10 ti nut es.
nm bs_cache_gclinmt() =infinity | integer() > 0 <optional >
When performing a GC, thisis the max number of cache entries that will be deleted from the cache.

The reason why its possible to set a limit, is that if the cache is large, the GC can potentially take a long time,
during which the agent is "busy". But on a heavily loaded system, we also risk not removing enough e ements
in the cache, instead causing it to grow over time. Thisisthe reason the default valueisi nf i ni t y, which will
ensure that all candidates are removed as soon as possible.

Defaultisi nfinity.
error_report_nod() = aton{) <optional >

Defines an error report module, implementing the snmpa_error_report behaviour. Two modules are provided
with the toolkit: snnpa_error _| ogger andsnnpa_error _i o.

Defaultissnnpa_error _| ogger.
synbolic_store() = [synbolic_store_opt()]
symbolic_store_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent symbolic store.
For defaults seethe optionsinsynbol i c_store_opt ().
target cache() = [target _cache_opt()]
target _cache_opt() = {verbosity, verbosity()}
Defines options specific for the SNM P agent target cache.
For defaults seethe optionsint ar get _cache_opt ().
agent _config() = [agent_config_opt()] <mandatory>

agent _config_opt() = {dir, agent_config_dir()} | {force_load, force_load()}
| {verbosity, verbosity()}

Defines specific config related options for the SNMP agent.

For defaults see the optionsin agent _confi g_opt ().
agent _config_dir = dir() <mandatory>

Defines where the SNM P agent configuration files are stored.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 25

1.5 Running the application

force_load() = bool () <optional >

If t r ue the configuration files are re-read during start-up, and the contents of the configuration database ignored.
Thus, if t r ue, changes to the configuration database are lost upon reboot of the agent.

Default isf al se.
Manager specific config options and types:
server() = [server_opt()] <optional >

server_opt() = {tineout, server tinmeout()} | {verbosity, verbosity()} |
{cbproxy, server_cbproxy()} | {netif_sup, server_nis()}

Specifies the options for the manager server process.
Defaultissi | ence.
server_tineout() = integer() <optional>

Asynchronous regquest cleanup time. For every request, someinfoisstored internally, in order to be ableto deliver
the reply (when it arrives) to the proper destination. If the reply arrives, thisinfo will be deleted. But if thereis
no reply (in time), the info has to be deleted after the best befor e time has been passed. This cleanup will be
performed at regular intervals, defined by the ser ver _ti meout () time. The information will have a best
befor etime, defined by the Expi r e time given when calling the request function (seeasync_get, async_get_next
and async_set).

Time in milli-seconds.
Defaultis30000.
server _chbproxy() = tenporary (default) | permanent <optional >
This option specifies how the server will handle callback calls.
tenporary (default)
A temporary process will be created for each callback call.
per manent
With this the server will create a permanent (named) process that in effect serializes al callback calls.
Defaultist enpor ary.
server_nis() = none (default) | {PingTO PongTG <optional >

This option specifiesif the server should actively supervise the net-if process. Note that thiswill only work if the
used net-if process actually supports the protocol. See snmpm_network_interface behaviour for more info.

none (default)
No active supervision of the net-if process.
{PingTO :: pos_integer(), PongTO :: pos_integer()}

The Pi ngTOtime specifies the between a successful ping (or start) and the time when a ping message is to
be sent to the net-if process (basically the time between ping:s).

The PongTOtime specifies how long time the net-if process has to respond to a ping message, with a pong
message. It starts counting when the ping message has been sent.

Both times arein milli seconds.
Default isnone.

26 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

manager _config() = [manager_config_opt()] <mandatory>

manager _confi g_opt () = {dir, manager _config dir()} | {db_dir,
manager _db_dir ()} | {db_init_error, db_init_error()} | {repair,
manager _repair()} | {aut o_save, manager _aut o_save()} | {verbosity,

verbosity()}
Defines specific config related options for the SNMP manager.
For defaults see the optionsin manager _confi g_opt ().
manager _config dir = dir() <nandatory>
Defines where the SNM P manager configuration files are stored.
manager _db_dir = dir() <mandatory>
Defines where the SNMP manager store persistent data.
manager _repair() = false | true | force <optional >
Defines the repair option for the persistent database (if and how the table is repaired when opened).
Defaultist r ue.
manager _auto_save() = integer() | infinity <optional >
The auto save interval. Thetableis flushed to disk whenever not accessed for this amount of time.
Default is5000.
manager _irb() = auto | user | {user, integer()} <optional>

This option defines how the manager will handle the sending of response (acknowledgment) to received inform-
requests.

e aut o - The manager will autonomously send response (acknowledgment> to inform-request messages.

e {user, integer()} - Themanager will send response (acknowledgment) to inform-request messages
when the handle_inform function completes. The integer is the time, in milli-seconds, that the manager will
consider the stored inform-request info valid.

e« user -Sameas{user, integer()},exceptthat thedefaulttime, 15000 milli-seconds, is used.
See snmpm_network_interface, handle_inform and definition of the manager net if for more info.
Default isaut o.

manager _m bs() = [string()] <optional >
Specifiesalist of MIBs (including path) and defines which MIBs areinitialy loaded into the SNMP manager.
Defaultis[] .

manager _net if() = [manager_net if _opt()] <optional >

manager _net if_opt() = {module, manager_net if_nodule()} | {verbosity,
verbosity()} | {options, manager_net if_options()}

Defines options specific for the SNMP manager network interface entity.
For defaults seethe optionsin manager _net _i f _opt ().

manager _net if _options() = [nanager_net if _option()] <optional >

manager _net if _option() = {bind_to, bind to()} | { sndbuf,
sndbuf ()} | {recbuf, recbuf ()} | {no_reuse, no_reuse()}
| {filter, manager _net if filter_options()} | {extra_sock_opts,

extra_socket _options()} | {inet_backend, inet_backend()}

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 27

1.5 Running the application

These options are actually specific to the used module. The ones shown here are applicable to the default
manager _net _i f _nodul e().

For defaults seethe optionsin manager _net _i f _option().
manager _net _if_nodul e() = atom() <optional >

The module which handles the network interface part for the SNMP manager. It must implement the
snmpm_network_interface behaviour.

Defaultissnnpm net _i f.
manager _net _if_filter_options() = [nmanager_net_if _filter_option()] <optional >
manager _net if _filter_option() = {nmodule, manager _net if filter_nodul e()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager _net if _filter_nodul e().

For defaults seethe optionsin manager _net _if _filter_option().
manager _net if filter_nodul e() = aton() <optional >

Module which handles the network interface filter part for the SNMP manager. Must implement the
snmpm_network_interface filter behaviour.

Defaultissnnpm net _if_filter.
def _user_nodul e() = aton() <optional >
The module implementing the default user. See the snmpm_user behaviour.
Defaultissnnpm user _defaul t.
def user _data() = term() <optional >
Data for the default user. Passed to the user when calling the callback functions.
Defaultisundef i ned.
Common config types:
restart_type() = permanent | transient | tenporary
See supervisor documentation for more info.
Default isper manent for theagent andt r ansi ent for the manager.
db_init _error() =ternmnate | create | create_db_and dir

Defines what to do if the agent is unable to open an existing database file. t er m nat e means that the agent/
manager will terminate, cr eat e means that the agent/manager will remove the faulty file(s) and create new
ones, and cr eat e_db_and_di r means that the agent/manager will create the database file along with any
missing parent directories for the database file.

Defaultist er mi nat e.

priority() = atom() <optional >
Defines the Erlang priority for all SNMP processes.
Defaultisnor nal .

versions() = [version()] <optional >
version() = vl | v2 | v3
Which SNMP versions shall be accepted/used.
Defaultis[v1, v2,v3].

28 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

verbosity() = silence | info | log | debug | trace <optional >
Verbosity for a SNMP process. This specifies now much debug info is printed.
Defaultissi | ence.
bind to() = bool () <optional >
Ift rue, net_if bindstothe P address. If f al se, net_if listens on any | P address on the host whereit isrunning.
Defaultisf al se.
no_reuse() = bool () <optional >

If t rue, net_if does not specify that the IP and port address should be reusable. If f al se, the address is set
to reusable.

Default isf al se.
recbuf () = integer() <optional>
Receive buffer size.
Default value is defined by gen_udp.
sndbuf () = integer() <optional >
Send buffer size.
Default value is defined by gen_udp.
extra_socket _options() = list() <optional >
A list of arbitrary socket options.

Thislist is not inspected by snmp (other then checking that its alist). Its the users responsibility to ensure that
these are valid options and does not conflict with the "normal” options.

Defaultis[] .
i net _backend() = inet | socket <optional >
Choose the inet-backend.
This option make it possible to use net_if (gen_udp) with a different inet-backend (‘inet' or 'socket’).
Defaultisi net .
note_store() = [note_store_opt()] <optional >

note_store_opt() = {tineout, note store_tineout()} | {verbosity,
verbosity()}

Specifies the options for the SNM P note store.
For defaults seethe optionsinnot e_st ore_opt () .
note store_tinmeout() = integer() <optional>

Note cleanup time. When storing a note in the note store, each note is given lifetime. Every ti neout the
note_store process performs a GC to remove the expired note's. Time in milli-seconds.

Default is30000.
audit_trail _log() [audit_trail_log_opt()] <optional>

audit _trail _log opt() = {type, atl_type()} | {dir, atl_dir()} | {size,
atl _size()} | {repair, atl _repair()} | {segno, atl_seqno()}

If present, this option specifiesthe optionsfor theaudit trail logging. Thedi sk_I og moduleisused to maintain
awrap log. If present, thedi r and si ze options are mandatory.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 29

1.5 Running the application

If not present, audit trail logging is not used.
atl _type() =read | wite | read_wite <optional >

Specifies what type of an audit trail log should be used. The effect of the type is actually different for the the
agent and the manager.

For the agent:

« Ifwriteisspecified, only set requests are logged.
* If read isspecified, only get requests are logged.
« Ifread_write,al requestsarelogged.

For the manager:

« Ifwriteisspecified, only sent messages are logged.

e Ifread isspecified, only received messages are logged.
 Ifread_writ e, both outgoing and incoming messages are logged.

Defaultisread_write.
atl _dir = dir() <nmandatory>

Specifies where the audit trail 1og should be stored.

Ifaudit_trail | og specifiesthat logging should take place, this parameter must be defined.
atl _size() = {integer(), integer()} <mandatory>

Specifies the size of the audit trail log. This parameter issent todi sk_| og.

Ifaudit _trail | og specifiesthat logging should take place, this parameter must be defined.
atl _repair() =true | false | truncate | snnp_repair <optional >

Specifies if and how the audit trail log shall be repaired when opened. Unless this parameter has the value
snnp_repair itissenttodi sk_I og. If, on the other hand, the valueissnnp_r epai r, snmp attempts to
handle certain faults on its own. And even if it cannot repair the file, it does not truncate it directly, but instead
movesit aside for later off-line analysis.

Defaultist r ue.
atl _seqno() = true | fal se <optional >

Specifiesif the audit trail log entries will be (sequence) numbered or not. The range of the sequence numbers are
according to RFC 5424, i.e. 1 through 2147483647.

Defaultisf al se.

1.5.2 Modifying the Configuration Files

To to start the application (agent and/or manager), the configuration files must be modified and there are two ways of
doing this. Either edit the files manually, or run the configuration tool as follows.

If authentication or encryption is used (SNMPv3 only), start the cr ypt o application.

30 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

1> snmp:config().

Simple SNMP configuration tool (version 4.0)

Note: Non-trivial configurations still has to be
done manually. IP addresses may be entered
as dront.ericsson.se (UNIX only) or
123.12.13.23

Configure an agent (y/n)? [y]

Agent system config:
1. Agent process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&2,1&2&3,2&3)7 [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence]
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/db
6. Mib storage type (ets/dets/mnesia)? [ets]
7. Target cache verbosity (silence/info/log/debug/trace)? [silencel
8. Symbolic store verbosity (silence/info/log/debug/trace)? [silence]
9. Local DB verbosity (silence/info/log/debug/trace)? [silence]
10. Local DB repair (true/false/force)? [true]
11. Local DB auto save (infinity/milli seconds)? [5000]
12. Error report module? [snmpa error_ logger]
13. Agent type (master/sub)? [master]
14. Master-agent verbosity (silence/info/log/debug/trace)? [silence] log
15. Shall the agent re-read the configuration files during startup
(and ignore the configuration database) (true/false)? [true]
16. Multi threaded agent (true/false)? [false] true
17. Check for duplicate mib entries when installing a mib (true/false)? [false]
18. Check for duplicate trap names when installing a mib (true/false)? [false]
19. Mib server verbosity (silence/info/log/debug/trace)? [silencel
20. Mib server cache (true/false)? [true]
21. Note store verbosity (silence/info/log/debug/trace)? [silence]
22. Note store GC timeout? [30000]
23. Shall the agent use an audit trail log (y/n)? [n] y
23b. Audit trail log type (write/read write)? [read write]
23c. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/agent/log
23d. Max number of files? [10]
23e. Max size (in bytes) of each file? [10240]
23f. Audit trail log repair (true/false/truncate)? [true]
24. Which network interface module shall be used? [snmpa net if]
25. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
25a. Bind the agent IP address (true/false)? [falsel
25b. Shall the agents IP address and port be not reusable (true/false)? [falsel
25c. Agent request limit (used for flow control) (infinity/pos integer)? [infinity] 32
25d. Receive buffer size of the agent (in bytes) (default/pos integer)? [default]
25e. Send buffer size of the agent (in bytes) (default/pos integer)? [default]
25f. Do you wish to specify a network interface filter module (or use default) [default]

Agent snmp config:
1. System name (sysName standard variable) [bmk's agent]
2. Engine ID (snmpEngineID standard variable) [bmk's engine]
3. Max message size? [484]
4. The UDP port the agent listens to. (standard 161) [4000]
5. IP address for the agent (only used as id
when sending traps) [127.0.0.1]
6. IP address for the manager (only this manager
will have access to the agent, traps are sent
to this one) [127.0.0.1]
7. To what UDP port at the manager should traps

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 31

1.5 Running the application

be sent (standard 162)? [5000]
8. Do you want a none- minimum- or semi-secure configuration?
Note that if you chose vl or v2, you won't get any security for these
requests (none, minimum, semi_des, semi_aes) [minimum]
making sure crypto server is started...
8b. Give a password of at least length 8. It is used to generate
private keys for the configuration: kalle-anka
9. Current configuration files will now be overwritten. Ok (y/n)? [y]

Info: 1. SecurityName "initial" has noAuthNoPriv read access
and authenticated write access to the "restricted"
subtree.
2. SecurityName "all-rights" has noAuthNoPriv read/write
access to the "internet" subtree.
3. Standard traps are sent to the manager.
4. Community "public" is mapped to security name "initial".
5. Community "all-rights" is mapped to security name "all-rights".
The following agent files were written: agent.conf, community.conf,
standard.conf, target addr.conf, target params.conf,
notify.conf, vacm.conf and usm.conf

Configure a manager (y/n)? [yl

Manager system config:
1. Manager process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&82,1&2&3,2&3)7 [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence] log
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/db
6. Database repair (true/false/force)? [true]
7. Database auto save (infinity/milli seconds)? [5000]
8. Inform request behaviour (auto/user)? [auto]
9. Server verbosity (silence/info/log/debug/trace)? [silence] log
10. Server GC timeout? [30000]
11. Note store verbosity (silence/info/log/debug/trace)? [silence]
12. Note store GC timeout? [30000]
13. Which network interface module shall be used? [snmpm net if]
14. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
15. Bind the manager IP address (true/false)? [false]
16. Shall the manager IP address and port be not reusable (true/false)? [false]
17. Receive buffer size of the manager (in bytes) (default/pos integer)? [default]
18. Send buffer size of the manager (in bytes) (default/pos integer)? [default]
19. Shall the manager use an audit trail log (y/n)? [n] y
19b. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/manager/log
19c. Max number of files? [10]
19d. Max size (in bytes) of each file? [10240]
19e. Audit trail log repair (true/false/truncate)? [true]
20. Do you wish to assign a default user [yes] or use
the default settings [no]l (y/n)? [n]

Manager snmp config:

1. Engine ID (snmpEngineID standard variable) [bmk's engine]

2. Max message size? [484]

3. IP address for the manager (only used as id
when sending requests) [127.0.0.1]

4. Port number (standard 162)? [5000]

5. Configure a user of this manager (y/n)? [y]

5b. User id? kalle

5c. User callback module? snmpm_user_default

5d. User (callback) data? [undefined]

5. Configure a user of this manager (y/n)? [y] n

32 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

6. Configure an agent handled by this manager (y/n)? [y]

6b. User id? kalle

6c. Target name? [bmk's agent]

6d. Version (1/2/3)7 [1] 3

6e. Community string ? [public]

6f. Engine ID (snmpEngineID standard variable) [bmk's engine]

6g. IP address for the agent [127.0.0.1]

6h. The UDP port the agent listens to. (standard 161) [4000]

6i. Retransmission timeout (infinity/pos integer)? [infinity]

6j. Max message size? [484]

6k. Security model (any/v1/v2c/usm)? [any] usm

61. Security name? ["initial"]

6m. Security level (noAuthNoPriv/authNoPriv/authPriv)? [noAuthNoPriv] authPriv

6. Configure an agent handled by this manager (y/n)? [yl n

7. Configure an usm user handled by this manager (y/n)? [yl

7a. Engine ID [bmk's engine]

7b. User name? hobbes

7c. Security name? [hobbes]

7d. Authentication protocol (no/sha/md5)? [no] sha

7e Authentication [sha] key (length 06 or 20)? [""] [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \
17,18,19,20]

7d. Priv protocol (no/des/aes)? [no] des

7f Priv [des] key (length 0 or 16)? [""] 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

7. Configure an usm user handled by this manager (y/n)? [y] n

8. Current configuration files will now be overwritten. Ok (y/n)? [yl

Configuration directory for system file (absolute path)? [/ldisk/snmp]
ok

1.5.3 Starting the application

Start Erlang with the command:
erl -config /tmp/snmp/sys

If authentication or encryption is used (SNMPv3 only), start the cr ypt o application. If this step is forgotten, the
agent will not start, but report a{ confi g_error, {unsupported_crypto, }} error.

1> application:start(crypto).
ok

2> application:start(snmp).
ok

1.5.4 Debugging the application

It is possible to debug every (non-supervisor) process of the application (both agent and manager), possibly with
the exception of the net_if module(s), which could be supplied by a user of the application). Thisis done by calling
the snnpa: ver bosi ty/ 2 and snnpm ver bosi t y/ 2 function(s) and/or using configuration parameters. The
verbosity itself has several levels: silence | info | log | debug | trace. Forthelowest verbosity
si | ence, nothing is printed. The higher the verbosity, the moreis printed. Default valueisawayssi | ence.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 33

1.5 Running the application

3> snmpa:verbosity(master agent, log).
ok
5> snmpa:verbosity(net if, log).
ok
6>
%% Example of output from the agent when a get-next-request arrives:
** SNMP NET-IF LOG:
got packet from {147,12,12,12}:5000

** SNMP NET-IF MPD LOG:
vl, community: all-rights

** SNMP NET-IF LOG:
got pdu from {147,12,12,12}:5000 {pdu, 'get-next-request',

62612569, noError,0,
[{varbind,[1,1], 'NULL", 'NULL',1}1}

** SNMP MASTER-AGENT LOG:
apply: snmp_generic,variable func, [get, {sysDescr,persistent}]

** SNMP MASTER-AGENT LOG:
returned: {value,"Erlang SNMP agent"}

** SNMP NET-IF LOG:
reply pdu: {pdu, 'get-response',62612569,no0Error,0,
[{varbind,[1,3,6,1,2,1,1,1,0],
"OCTET STRING',
"Erlang SNMP agent",1}]}

** SNMP NET-IF INFO: time in agent: 19711 mysec

Other useful function(s) for debugging the agent are:
snnmpa:info/0,1

info is used to retrieve alist of miscellaneous agent information.
snnpa: whi ch_al i asnanes/0

which_aliasnames is used to retrieve alist of al alias-names known to the agent.
snnpa: whi ch_t abl es/ 0

which_tablesisused to retrieve alist of al (MIB) tables known to the agent.
snnpa: whi ch_vari abl es/ 0

which_variablesisused to retrieve alist of all (MIB) variables known to the agent.
snnpa: whi ch_notifications/0

which_notificationsis used to retrieve alist of all (MIB) notifications/traps known to the agent.
snnpa: restart_worker/0, 1

restart_worker is used to restart the worker process of a multi-threaded agent.
snnpa: restart_set _worker/0, 1

restart_set_worker is used to restart the set-worker process of a multi-threaded agent.
snnpa_l ocal _db: print/0,1,2

For example, this function can show the counters snipl nPkt s and snnpQut Pkt s.

34 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.6 Definition of Agent Configuration Files

Another useful way to debug the agent is to pretty-print the content of all the tables and/or variables handled directly
by the agent. This can be done by simply calling:

snnpa: print_mb_info()

See print_mib_info/0, print_mib_tables/0 or print_mib_variables/O for more info.

1.6 Definition of Agent Configuration Files

All configuration datamust beincluded in configuration filesthat are located in the configuration directory. The name
of thisdirectory isgivenintheconf i g_di r configuration parameter. Thesefilesareread at start-up, and are used to
initialize the SNMPv2-MIB or STANDARD-MIB, SNMP-FRAMEWORK-MIB, SNMP-MPD-MIB, SNMP-VIEW-
BASED-ACM-MIB, SNMP-COMMUNITY-MIB, SNMP-USER-BASED-SM-MIB (adjusted according to SNMP-
USM-HMAC-SHA2-MIB), SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB (refer to the Management of
the Agent for a description of the MIBs).

Thefilesare:

e agent. conf: see Agent Information

* standard. conf: see System Information

+ context. conf : see Contexts

e communi ty. conf : see Communities

e target_addr. conf: see Target Address Definitions

e target_parans. conf: see Target Parameters Definitions
 vacm conf:seeMIB Viewsfor VACM

e usm conf : see Security datafor USM

* notify. conf: seeNotify Definitions

The directory where the configuration files are found is given as a parameter to the agent.

The entry format in all files are Erlang terms, separated by a'.' and a newline. In the following sections, the formats
of these terms are described. Comments may be specified as ordinary Erlang comments.

Syntax errorsin thesefiles are discovered and reported with the function conf i g_er r/ 2 of the error report module
at start-up.

1.6.1 Agent Information

The agent information should be stored in afile called agent . conf .
Each entry isatuple of size two:

{Agent Vari abl e, Val ue}.

e Agent Vari abl e is one of the variables in SNMP-FRAMEWORK-MIB or one of the internal variables
i nt Agent UDPPor t , which defines which UDP port the agent listensto, or i nt Agent Tr ansport s, which
defines the transport domains and addresses of the agent.

e Val ue isthevauefor the variable.
The following example shows an agent . conf file:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 35

1.6 Definition of Agent Configuration Files

{intAgentUDPPort, 4000}.
{intAgentTransports,
[{transportDomainUdpIpv4, {141,213,11,24}},
{transportDomainUdpIpv6, {0,0,0,0,0,0,0,1}}1}.
{snmpEngineID, "mbj's engine"}.
{snmpEngineMaxPacketSize, 484}.

These are the supported entries and their value types:

{snmpEngine, string()}. % Mandatory
{snmpEngineMaxMessageSize, non neg integer()}. % Mandatory
{intAgentUDPPort, pos integer()}. % Optional

{intAgentTransports, intAgentTransports()}. % Mandatory

And here are the transport value types:

intAgentTransports() :: [intAgentTransport()].
intAgentTransport() :: {TDomain, Addr} |
{TDomain, EAddr, Kind} |
{TDomain, EAddr, Opts} |
{TDomain, EAddr, Kind, Opts}

TDomain :: transportDomainUdpIpv4 | transportDomainUdpIpv6.
Addr :: {IpAddr, IpPort} | IpAddr.

IpAddr 1t inet:ip_address() | snmpIpAddr().

snmpIpAddr() :: [non neg integer()].

IpPort 11 pos_integer().

EAddr :: {inet:ip_address(), PortInfo}.

PortInfo :: pos_integer() | system | range() | ranges().
range() :: {Min :: pos integer(), Max :: pos integer()}, Min < Max
ranges () :: [pos_integer() | range()].

Kind 11 req _responder | trap sender.

Opts i list().

If a"traditional" transport is specified (without explicit Ki nd, handling both requests and traps) for atransport domain,
its not possible to aso specify atransport (for that domain) with a specific Ki nd. Thisisfor example not allowed:

[{transportDomainUdpIpv4, {{141,213,11,24}, 4000}},
{transportDomainUdpIpv4, {{141,213,11,24}, 4001}, trap sender}].

Note that only one transport per kind for each transport domain can be configured.

Port | nf o syst emis used to indicate that the 'system' should choose (the way port number '0' (zero) is normally
used). Port info '0" (zero) cannot be used for this, sinceit is (internally) used to represent the 'default’ port number.

In the traditional transport entries, when the Addr value does not contain a port number, the value of
i nt Agent UDPPor t isused.

Note that the (new) extended transport entries (including Ki nd and Opt s) must specify port-info as they ignore any
value specified by i nt Agent UDPPort .

Opt s isthe same as for the net-if process and takes precedence (for that transport) if present. The point is that each
transport can have its own socket options.

Thevaue of snpEngi nel Disastring, which for a deployed agent should have a very specific structure. See RFC
2271/2571 for details.

36 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.6 Definition of Agent Configuration Files

The legacy and intermediate variables i nt Agent | pAddr ess and i nt Agent Tr anspor t Donai n are till
supported so old agent . conf fileswill work.

But they cannot be combined with intAgentTransports.

1.6.2 Contexts

The context information should be stored in afilecalled cont ext . conf . Thedefault context

need not be present.

Each row defines a context in the agent. This information is used in the table vacntCont ext Tabl e in the SNMP-
VIEW-BASED-ACM-MIB.

Each entry isaterm:
Cont ext Name.
« Cont ext Nane isastring.

1.6.3 System Information

The system information should be stored in afile called st andar d. conf .
Each entry isatuple of size two:

{SystenVari abl e, Val ue}.

* SystenVari abl e isoneof the variablesin the system group, or snnpEnabl eAut henTr aps.
* Val ue isthevaluefor the variable.

The following example shows avalid st andar d. conf file:

{sysDescr, "Erlang SNMP agent"}.

{sysObjectID, [1,2,3]}.

{sysContact, "(mbj,eklas)@erlang.ericsson.se"}.
{sysName, "test"}.

{sysServices, 72}.

{snmpEnableAuthenTraps, enabled}.

A value must be provided for all variables, which lack default valuesin the MIB.

1.6.4 Communities

The community information should be stored in afile called comuni t y. conf . It must be present if the agent is
configured for SNMPv1 or SNMPv2c.

An SNMP community is a relationship between an SNMP agent and a set of SNMP managers that defines
authentication, access control and proxy characteristics.

The corresponding tableis snnmpComuni t yTabl e inthe SNMP-COMMUNITY -MIB.

Each entry isaterm:

{Communi tyl ndex, ConmunityNane, SecurityNane, ContextNane, TransportTag}.
e Comuni t yl ndex isanon-empty string.

e Communi t yNane isastring.

e SecurityNane isastring.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 37

1.6 Definition of Agent Configuration Files

* Cont ext Name isastring.
e Transport Tagisastring.

1.6.5 MIB Views for VACM
The information about MIB Views for VACM should be stored in afile called vacm conf .

The corresponding tables are vacnBecurityToG oupTable, vacmAccessTable and
vacmVi ewTr eeFani | yTabl e inthe SNMP-VIEW-BASED-ACM-MIB.

Each entry is one of the terms, one entry corresponds to one row in one of the tables.

{vacnBecurityToGroup, SecModel, SecNane, G oupNane}.

{vacmAccess, G oupNane, Prefix, SecMddel, SeclLevel, Match, ReadView, WiteView,
Not i fyVi ew}.

{vacnVi ewTreeFani |y, View ndex, ViewSubtree, ViewStatus, Viewvask}.

 SecMbdel isany,vl,v2c,orusm

e SecNane isastring.

* G oupNane isastring.

e« Prefixisastring.

 SeclLevel isnoAut hNoPri v, aut hNoPri v, or aut hPri v
e Matchisprefix orexact.

 ReadVi ewisastring.

* WiteVi ewisastring.

« NotifyVi ewisastring.

* Vi ew ndex isaninteger.

* ViewSubtreeisalist of integer.

* Vi ewsSt at us iseitheri ncl uded or excl uded

* Vi ewiask iseither nul | or alist of ones and zeros. Ones nominate that an exact match is used for this sub-
identifier. Zeros are wild-cards which match any sub-identifier. If the mask is shorter than the sub-tree, the tail is
regarded as al ones. nul | isshorthand for amask with all ones.

1.6.6 Security data for USM

The information about Security data for USM should be stored in afile called usm conf , which must be present if
the agent is configured for SNMPv3.

The corresponding table isusmJser Tabl e in the SNMP-USER-BASED-SM-MIB (adjusted according to SNMP-
USM-HMAC-SHA2-MIB).

Each entry isaterm:

{Engi nel D, UserName, SecNane, Cone, AuthP, AuthKeyC, OanAuthKeyC, PrivP,
PrivKeyC, OmnPrivKeyC, Public, AuthKey, PrivKey}.

* Engi nel Disastring.

e User Nane isastring.

* SecNane isastring.

e ConeiszeroDot Zer o or alist of integers.

e Aut hP is a usmNoAut hPr ot ocol , usmHVACMD5AuUt hPr ot ocol , usnHVACSHAAut hPr ot ocol ,
usnmHVAC128SHA224Aut hPr ot ocol , usmHVAC192SH256Aut hPr ot ocol ,
usmMHVAC256 SHA384 Aut hPr ot ocol or usmHVAC384SHA512Aut hPr ot ocol .

38| Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.6 Definition of Agent Configuration Files

* Aut hKeyCisastring.
e« OwnAut hKeyCisastring.
e PrivPisausniNoPri vProt ocol ,usnDESPri vProt ocol orusnmAesCf b128Pr ot ocol .
* PrivKeyCisastring.
e OmPrivKeyCisastring.
e Publicisastring.
e Aut hKey isalist (of integer). Thisisthe User's secret localized authentication key. It is not visible in the MIB.
The length (number of octets) of this key needsto be;
e 16if usnHVACVD5AuUt hPr ot ocol .
e 20if usmHMACSHAAUt hPr ot ocol .
e 28if usnHVAC128SHA224Aut hPr ot ocol .
e 32if usmHVAC192SHA256Aut hPr ot ocol .
e 48if usnHVAC256SHA384Aut hPr ot ocol .
e 64if usnHVAC384SHA512Aut hPr ot ocol

* PrivKey isalist (of integer). Thisisthe User's secret localized encryption key. It isnot visiblein the MIB. The
length of this key needsto be 16 if usmDESPr i vPr ot ocol or usmAesCf b128Pr ot ocol isused.

1.6.7 Notify Definitions

Theinformation about Notify Definitions should be stored in afilecalled noti fy. conf.
The corresponding tableissnnpNot i f yTabl e inthe SNMP-NOTIFICATION-MIB.
Each entry isaterm:

{Noti fyNanme, Tag, Type}.

* Noti f yName isaunique hon-empty string.

e Tagisastring.

e Typeistraporinform

1.6.8 Target Address Definitions
Theinformation about Target Address Definitions should be stored in afilecaledt ar get _addr . conf.

The corresponding tables are snnpTarget Addr Table in the SNMP-TARGET-MIB and
snnpTar get Addr Ext Tabl e inthe SNMP-COMMUNITY-MIB.

Each entry isaterm:

{Target Nane, Dorai n, Addr, Tineout, RetryCount, TaglList, ParamsNane, Engi neld}.
or
{Target Nane, Dommi n, Addr, Timeout, RetryCount, TagList, ParansName, Engineld,
TMask, MaxMessageSi ze}.
e Tar get Nane isaunique non-empty string.
» Dormai nisoneof theatoms: t r anspor t Domai nUdpl pv4 |t ransport Domai nUdpl pv6.
e Addr is either an | pAddr or an {|I pAddr, |pPort} tuple | pAddr is either a regular Erlang/OTP
i p_address() oratraditional SNMP integer list, and | pPor t isaninteger.
If | pPort isomitted 162 isused.
e Ti meout isaninteger.
* RetryCount isaninteger.
e TagLi st isastring.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 39

1.7 Definition of Manager Configuration Files

e ParansNane isastring.
e Engi nel d isastring or theatom di scovery.

e TMask isspecified just as Addr or as[] . Notein particular that using alist of 6 bytes for 1Pv4 or 8 words plus
2 bytesfor IPv6 are still valid address formats so old configurations will work.

* MaxMessageSi ze isaninteger (default: 2048).
The old tuple formats with | p address and Udp port number found in old configurations still work.

Note that if Engi nel d hasthe value di scovery, the agent cannot send i nf or mmessages to that manager until
it has performed the discovery process with that manager.

1.6.9 Target Parameters Definitions

Theinformation about Target Parameters Definitions should be stored in afile called t ar get _par ans. conf.
The corresponding tableissnnpTar get Par ans Tabl e inthe SNMP-TARGET-MIB.

Each entry isaterm:

{Par amsNane, MPModel, SecurityModel, SecurityName, SecuritylLevel}.

« Par ansNane isaunique hon-empty string.

 MPModel isvl,v2c orv3

e SecurityMdel isvl,v2c,orusm

e SecurityNane isastring.

e SecuritylLevel isnoAut hNoPri v, aut hNoPri v oraut hPri v.

1.7 Definition of Manager Configuration Files

Configuration data may be included in configuration files that is located in the configuration directory. The name of
thisdirectory isgivenintheconf i g_di r configuration parameter. These files are read at start-up.

The directory where the configuration files are found is given as a parameter to the manager.

The entry format in all files are Erlang terms, separated by a'.' and a newline. In the following sections, the formats
of these terms are described. Comments may be specified as ordinary Erlang comments.

If syntax errors are discovered in these files they are reported with the function conf i g_er r/ 2 of the error report
module at start-up.

1.7.1 Manager Information
The manager information should be stored in afile called manager . conf .
Each entry isatuple of size two:
{Vari abl e, Val ue}.
e Vari abl e isone of thefollowing:
e transports - which defines the transport domains and their addresses for the manager. Mandatory
Val ue isalist of { Domai n, Addr} tuplesor Donai n atoms.

» Dommai nisoneof t ransport Domai nUdpl pv4 ort ransport Domai nUdpl pv6.

e Addr is for the currently supported domains either an | pAddr or an {I pAddr, |pPort}
tuple.l pAddr iseither aregular Erlang/OTPi p_addr ess() or atraditional SNMP integer list and
| pPort isaninteger.

When Addr does not contain a port number, the value of por t isused.

40 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.7 Definition of Manager Configuration Files

When a Addr isnot specified i.e by using only a Dormai n atom, the host's name is resolved to find the
IP address, and the value of por t isused.

e port - which defines which UDP port the manager uses for communicating with agents. Mandatory if
t ransport s does not define aport number for every transport.

* engi ne_i d-TheSnnpEngi nel Dasdefinedin SNMP-FRAMEWORK-MIB. Mandatory.

e max_nessage_si ze - The snnpEngi neMaxMessageSi ze as defined in SNMP-FRAMEWORK -
MIB. Mandatory.

e Val ue isthevaluefor the variable.
The legacy and intermediate variablesaddr ess and domai n are still supported so old configurations will work.

The following example shows anmanager . conf file

{transports, [{transportDomainUdpIpv4, {{141,213,11,24}, 5000}},
{transportbDomainUdpIpv6, {{0,0,0,0,0,0,0,1}, 5000}}1}.
{engine id, "mgrEngine"}.

{max _message size, 484}.

Thevalue of engi ne_i d isastring, which should have avery specific structure. See RFC 2271/2571 for details.

1.7.2 Users

For each manager user, the manager needs some information. Thisinformation is either added intheuser s. conf
config file or by calling the register_user function in run-time.

Each row defines amanager user of the manager.
Each entry isatuple of sizefour:
{Userld, UserMd, UserData, DefaultAgentConfig}.

e User | disany term (used to uniquely identify the user).
* User Mod isthe user callback module (atom).
e User Dat a isany term (passed on to the user when calling the User Mod.

« Defaul t Agent Confi g isalist of default agent config's. These values are used as default values when this
user registers agents.

1.7.3 Agents

The information needed to handle agents should be stored in afile called agent s. conf . It is also possible to add
agentsin run-time by calling the register_agent.

Each entry isatuple:

{Userld, TargetNane, Conm Donain, Addr, EnginelD, Tineout, MuxMessageSi ze,
Version, SechMdel, SecNanme, SeclLevel}.

« User | distheidentity of the manager user responsible for this agent (term).

e Tar get Nane isaunique non-empty string.

e Commisthe community string (string).

« Donmi n isthetransport domain, either t r anspor t Domai nUdpl pv4 ort ransport Donmai nUdpl pv6.

e Addr istheaddressinthetransport domain, either an {1 pAddr, | pPort} tupleor atraditional SNMP integer
list containing port number. | pAddr is either aregular Erlang/OTP i p_addr ess() or atraditiona SNMP
integer list not containing port number, and | pPor t isan integer.

* Engi nel Disthe engine-id of the agent (string).

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 41

1.8 Agent Implementation Example

e Ti meout isre-transmission timeout (i nfi ni ty |integer).

« MaxMessageSi ze isthe max message size for outgoing messages to this agent (integer).
* Versionistheversion (v1]|v2]|v3).

* SecMdel isthe security model (any | v1|v2c | usm).

* SecNane isthe security name (string).

* SeclLevel issecurity level (noAuthNoPriv | authNoPriv | authPriv).

Legacy configurations using tuples without Domai n element, aswell aswith al TDomai n, | p and Port elements
still work.

1.7.4 Security data for USM

The information about Security data for USM should be stored in afile called usm conf , which must be present
if the manager wishes to use SNMPv3 when communicating with agents. It is also possible to add usm data in run-
time by calling the register_usm_user.

The corresponding table isusmJser Tabl e in the SNMP-USER-BASED-SM-MIB (adjusted according to SNMP-
USM-HMAC-SHA2-MIB).
Each entry isaterm:

{Engi nel D, User Nanme, AuthP, AuthKey, PrivP, PrivKey}.
{Engi nel D, User Name, SecNane, AuthP, AuthKey, PrivP, PrivKey}.

Thefirst case is when we have the identity-function (Sec Nane = User Nane).
* Engi nel Disastring.
e User Nane isastring.

e SecNane isastring.

e Aut hP is a usmNoAut hPr ot ocol , usmHVACMD5AuUt hPr ot ocol , usnHVACSHAAut hPr ot ocol ,
usmHVAC128SHA224Aut hPr ot ocol , usmHVAC192SH256Aut hPr ot ocol ,
usmMHVAC256 SHA384 Aut hPr ot ocol or usmHVAC384SHA512Aut hPr ot ocol .

e Aut hKey isalist (of integer). Thisisthe User's secret localized authentication key. It is not visible in the MIB.
The length (number of octets) of this key needsto be:
e 16if usnHVACVD5AuUt hPr ot ocol .
e 20if usmHMACSHAAUt hPr ot ocol .
o 28if usnHVAC128SHA224Aut hPr ot ocol .
e 32if usnHVAC192SHA256Aut hPr ot ocol .
e 48if usnHVAC256SHA384Aut hPr ot ocol .
e 64if usnHVAC384SHA512Aut hPr ot ocol .
e PrivPisausniNoPri vProt ocol ,usnDESPri vProt ocol orusnmAesCf b128Pr ot ocol .

* PrivKey isalist (of integer). Thisisthe User's secret localized encryption key. It isnot visible in the MIB. The
length of thiskey needsto be 16 if usnDESPr i vPr ot ocol or usmAesCf b128Pr ot ocol isused.

1.8 Agent Implementation Example

This Implementation Example section describes how an MIB can be implemented with the SNMP Development
Toolkit.

The example shown can be found in the toolkit distribution.
The agent is configured with the configuration tool, using default suggestions for everything but the manager node.

42 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.8 Agent Implementation Example

1.8.1 MIB

The MIB used in this example is called EX1-MIB. It contains two objects, a variable with a name and a table with
friends.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 43

1.8 Agent Implementation Example

EX1-MIB DEFINITIONS ::= BEGIN
IMPORTS
experimental FROM RFC1155-SMI
RowStatus FROM STANDARD-MIB

DisplayString FROM RFC1213-MIB
OBJECT-TYPE FROM RFC-1212

’

examplel OBJECT IDENTIFIER ::= { experimental 7 }

myName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"My own name"
::= { examplel 1 }

friendsTable OBJECT-TYPE
SYNTAX SEQUENCE OF FriendsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of friends."
::= { examplel 4 }

friendsEntry OBJECT-TYPE
SYNTAX FriendsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
INDEX { fIndex }
::= { friendsTable 1 }

FriendsEntry ::=
SEQUENCE {

fIndex
INTEGER,

fName
DisplayString,

fAddress
DisplayString,

fStatus
RowStatus }

fIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"number of friend"
::= { friendsEntry 1 }

fName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Name of friend"
::= { friendsEntry 2 }

fAddress OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))

44 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.8 Agent Implementation Example

ACCESS read-write
STATUS mandatory
DESCRIPTION

"Address of friend"
::= { friendsEntry 3 }

fStatus OBJECT-TYPE

SYNTAX RowStatus

ACCESS read-write
STATUS mandatory

DESCRIPTION

"The status of this conceptual row."
::= { friendsEntry 4 }

fTrap TRAP-TYPE
ENTERPRISE examplel
VARIABLES { myName, fIndex }
DESCRIPTION
"This trap is sent when something happens to
the friend specified by fIndex."

END

1.8.2 Default Implementation

Without writing any instrumentation functions, we can compile the MIB and use the default implementation of it.
Recall that MIBsimported by "EX1-MIB.mib" must be present and compiled inthe current directory (*./STANDARD-
MIB.bin"," /JRFC1213-MIB.bin") when compiling.

unix> erl -config ./sys

1> application:start(snmp).

ok

2> snmpc:compile("EX1-MIB").

No accessfunction for 'friendsTable', using default.
No accessfunction for 'myName', using default.

{ok, "EX1-MIB.bin"}

3> snmpa:load mibs(snmp master agent, ["EX1-MIB"]).
ok

This MIB is now loaded into the agent, and a manager can ask questions. As an example of this, we start another
Erlang system and the simple Erlang manager in the toolKkit:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 45

1.8 Agent Implementation Example

1> snmp_test mgr:start link([{agent,"dront.ericsson.se"},{community,"all-rights"},
%% making it understand symbolic names: {mibs, ["EX1-MIB","STANDARD-MIB"]}]).
{ok, <0.89.0>}

%% a get-next request with one OID.

2> snmp_test mgr:gn([[1,3,6,1,3,7]1]).

ok

* Got PDU:

[myName, 0] = []

%% A set-request (now using symbolic names for convenience)

3> snmp_test mgr:s([{[myName,®], "Martin"}]).

ok

* Got PDU:

[myName, 0] = "Martin"

%% Try the same get-next request again

4> snmp_test mgr:gn([[1,3,6,1,3,71]).

ok

* Got PDU:

[myName, 0] = "Martin"

%% ... and we got the new value.

%% you can event do row operations. How to add a row:
5> snmp_test mgr:s([{[fName,0], "Martin"}, {[fAddress,0],"home"}, {[fStatus,0],4}]).
%% createAndGo

ok

* Got PDU:

[fName,0] = "Martin"
[fAddress,0] = "home"

[fStatus,0] = 4

6> snmp_test mgr:gn([[myName,0]]).
ok

* Got PDU:

[fName,0] = "Martin"
7> snmp_test mgr:gn().
ok

* Got PDU:
[fAddress,0] = "home"
8> snmp_test mgr:gn().
ok

* Got PDU:

[fStatus,0] = 1

9>

1.8.3 Manual Implementation

The fol