ERLANG

Kernel

Copyright © 1997-2023 Ericsson AB. All Rights Reserved.
Kernel 9.1
September 20, 2023

Copyright © 1997-2023 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 20, 2023

1.1 Introduction

1 Kernel User's Guide

1.1 Introduction

1.1.1 Scope

TheKernd application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
e Codeloading

e Logging

e Globa name service

* Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Socket Usage

1.2.1 Introduction

The socket interface (module) is basically a"thin" layer on top of the OS socket interface. It is assumed that, unless
you have specia needs, gen_[tcpludp|sctp] should be sufficient (when they become available).

Note that just because we have a documented and described option, it does not mean that the OS supports it. So its
recommended that the user reads the platform specific documentation for the option used.
Asynchronous calls

Some functions alow for an asynchronous call (accept/ 2, connect/ 3, recv/ 3,4, recvfrom 3, 4,
recvimsg/ 2, 3, 5, send/ 3, 4, sendnsg/ 3, 4 and sendt o/ 4, 5). This is achieved by setting the Ti neout
argument to nowai t . For instance, if calling ther ecv/ 3 function with Timeout set to nowai t (i.e.r ecv(Sock,
0, nowai t)) when thereisactually nothing to read, it will return with:

On Unix
{sel ect, Selectlnfo}
Sel ect | nf o containsthe Sel ect Handl e.
On Windows
{conpl etion, Conpl etionlnfo}
Conpl et i onl nf o containsthe Conpl et i onHandl e.

Ericsson AB. All Rights Reserved.: Kernel | 1

1.2 Socket Usage

When data eventually arrives a'select' or ‘completion’ message will be sent to the caller:
On Unix

{' $socket', socket(), select, SelectHandl e}

The caller can then make another call to the recv function and now expect data.

Notethat all other usersarelocked out until the ‘current user' has called the function (recv in this case). So either
immediately call the function or cancel .

On Windows
{' $socket', socket(), conpletion, {ConpletionHandl e, ConpletionStatus}}
The Conpl et i onSt at us contains the result of the operation (read).

The user must also be prepared to receive an abort message:
{" $socket', socket(), abort, Info}

If the operation is aborted for whatever reason (e.g. if the socket is closed "by someone else”). Thel nf o part contains
the abort reason (in this case that the socket hasbeen closed | nf o = {Sel ect Handl e, cl osed}).

The general form of the 'socket’ messageis:
{" $socket', Sock :: socket(), Tag :: aton(), Info :: term()}

Where the format of | nf o isafunction of Tag:

Tag Info value type

select select_handle()

completion {completion_handle(), CompletionStatus}
abort {select_handle(), Reason :: term()}

Table 2.1: socket message info value type

Thesel ect _handl e() isthesameaswasreturned inthe Sel ect | nf o.

Theconpl eti on_handl e() isthe same aswas returned inthe Conpl et i onl nf o.

1.2.2 Socket Registry

The socket registry is how we keep track of sockets. There are two functions that can be used for interaction:
socket : nunber _of /0 andsocket : whi ch_socket s/ 1.

In systems which create and delete many sockets dynamically, it (the socket registry) could become a bottleneck. For
such systems, there are a couple of ways to control the use of the socket registry.

Firstly, its possible to effect the global default value when building OTP from source with the two configure options:
--enable-esock-socket-registry (default) | --disable-esock-socket-registry

Second, its possible to effect the global default value by setting the environment variable
ESOCK _USE_SOCKET_REGQ STRY (boolean) before starting the erlang.

Third, its possible to alter the global default value in runtime by calling the functionuse_regi stry/ 1.

And finally, its possible to override the global default when creating a socket (with open/ 2 and open/ 4) by
providing the attribute use_r egi st ry (boolean) inthetheir Opt s argument (which effects that specific socket).

2 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

1.2.3 Socket Options

Optionsfor level ot p:

Other
Option Name Value Type Set Get Requirements and
comments
type = segpacket,
assoc_id integer() no yes protocol = sctp, isan
association
debug boolean() yes yes none
iow boolean() yes yes none
controlling_process | pid() yes yes none
The tuple format
isnot alowed on
default | Windows. 'default’
pos_integer() | only valid for set.
revbuf {pos_integer(), yes yes Thetupleformis
pos_ineteger()} only valid for type
'stream’ and protocol
'tep'.
default | default only valid for
rcvctrlbuf pos. integer() yes yes et
default | default only valid for
sndctrlbuf pos. integer() yes yes .
fd integer() no yes none
the valueis set when
use registr boolean() no es the socket is created,
-registty y by acall to open/ 2
or open/ 4.
Table 2.2: option levels
Optionsfor level socket :
Other
Option Name Value Type Set Get Requirementsand
comments
acceptconn boolean() no yes none
. . . Before Linux 3.8,
bindtodevice string() yes yes this socket aption

Ericsson AB. All Rights Reserved.: Kernel | 3

1.2 Socket Usage

could be set, but
not get. Only works
for some socket
types (e.g.i net).
If empty valueis
set, the binding is
removed.

broadcast boolean() yes yes type = dgram

bsp_state map() no yes Windows only

. may require admin
debug integer() yes yes capahility
domain domain() no es Not on FreeBSD (for
y instance)

dontroute boolean() yes yes none

exclusiveaddruse boolean() yes yes Windows only

keepalive boolean() yes yes none

linger abort | linger() yes yes none

maxdg integer() no yes Windows only

max_msg_size integer() no yes Windows only

oobinline boolean() yes yes none
domain = local
(unix). Currently
disabled dueto a

peek_off integer() yes yes possible infinite
loop when calling
recv([peek]) the
second time.

priority integer() yes yes none

rotocol rotocol () no es Not on (some)

P P y Darwin (for instance)

revbuf non_neg_integer() yes yes none

rcvlowat non_neg_integer() yes yes none
Thisoptionis

. . not normally

rcvtimeo timeval() yes yes supported (see why

below). OTP has

4 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

to be explicitly

built with the - -
enabl e- esock-
rcvsndti nme
configure option

for thisto be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,

or evenif it may
cause malfunctions.
Therefore, we do
not recommend
setting this option.
Instead, use the

Ti meout argument
to, for instance, the
r ecv/ 3 function.

reuseaddr boolean() yes yes none

reuseport boolean() yes yes domain = inet | inet6

sndbuf non_neg_integer() yes yes none

not changeable on

sndlowat non_neg_integer() |yes yes Linux

Thisoptionis

not normally
supported (see why
below). OTP has

to be explicitly
built with the - -
enabl e- esock-
rcvsndti ne
configure option
for thisto be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefore, we do
not recommend
setting this option.
Instead, use the

Ti meout argument

sndtimeo timeval() yes yes

Ericsson AB. All Rights Reserved.: Kernel | 5

1.2 Socket Usage

to, for instance, the
send/ 3 function.

timestamp boolean() yes yes none
type type() no yes none
Table 2.3: socket options
Optionsfor level i p:
Other
Option Name Value Type Set Get Requirements and
comments
add_membership ip_mreq() yes no none
add_source_membershiip_mreq_source() yes no none
block_source ip_mreq_source() yes no none
drop_membership ip_mreq() yes no none
drop_source_membership mreq_source() yes no none
freebind boolean() yes yes none
hdrincl boolean() yes yes type = raw
minttl integer() yes yes type = raw
msfilter null | ip_msfilter() yes no none
mtu integer() no yes type = raw
mtu_discover ip_pmtudisc() yes yes none
multicast_all boolean() yes yes none
multicast_if any |ip4_address() |yes yes none
multicast_loop boolean() yes yes none
multicast_ttl uint8() yes yes none
nodefrag boolean() yes yes type = raw
pktinfo boolean() yes yes type = dgram
recvdstaddr boolean() yes yes type = dgram
recverr boolean() yes yes none

6 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

recvif boolean() yes yes type = dgram | raw
recvopts boolean() yes yes type =/= stream
recvorigdstaddr boolean() yes yes none
recvttl boolean() yes yes type =/= stream
retopts boolean() yes yes type =/= stream
router_alert integer() yes yes type = raw
sendsrcaddr boolean() yes yes none
some high-priority
tos ip_tos() yes yes levels may require
superuser capability
transparent boolean() yes yes requires admin
capability
ttl integer() yes yes none
unblock_source ip_mreq_source() yes no none
Table 2.4: ip options
Optionsfor level i pv6:
Other
Option Name Value Type Set Get Requirements and
comments
allowed only for
IPv6 sockets that are
addrform inet yes no connected and bound
to av4-mapped-on-
v6 address
add_membership ipv6_mreq() yes no none
type = dgram | raw,
authhdr boolean() yes yes obsolete?
drop_membership ipv6_mreq() yes no none
type = dgram | raw,
dstopts boolean() yes yes requires superuser
privileges to update

Ericsson AB. All Rights Reserved.: Kernel | 7

1.2 Socket Usage

flowinfo

boolean()

yes

yes

type = dgram | raw,
requires superuser
privilegesto update

hoplimit

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.0. FreeBSD) is
used to set in order
togethoplimt
as a control message
heeader. On others
(e.0. Linux),
recvhoplimt
isset in order to get
hoplimt.

hopopts

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

mtu

boolean()

yes

yes

Get: Only after the
socket has been
connected

mtu_discover

ipv6_pmtudisc()

yes

yes

none

multicast_hops

default | uint8()

yes

yes

none

multicast_if

integer()

yes

yes

type = dgram | raw

multicast_loop

boolean()

yes

yes

none

recverr

boolean()

yes

yes

none

recvhoplimit

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. Linux),
recvhoplimt
isset in order to get
hopl imt

recvpktinfo | pktinfo

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
togethoplimt
as a control message
heeader. On others
(e.g. Linux),
recvhoplimt
isset in order to get
hoplimt.

8 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

type = dgram | raw.
On some platforms
isused to set (=true)
in order to get the
recvtclass boolean() es es tcl ass control
y y message heeader.
Onothers, t cl ass
isset in order to get
t cl ass control
message heeader.
router_alert integer() yes yes type = raw
type = dgram | raw,
rthdr boolean() yes yes requires superuser
privileges to update
Set the traffic class
tclass integer() es es associated with
€9 y y outgoing packets.
RFC3542.
unicast_hops default | uint8() yes yes none
véonly boolean() yes no none
Table 2.5: ipv6 options
Optionsfor level t cp:
Other
Option Name Value Type Set Get Requirements and
comments
congestion string() yes yes none
cork boolean() es es ‘nopush one some
y y platforms (FreeBSD)
On Windows (at
. least), itisillegal to
keepent integer() yes yes set to avalue greater
than 255.
keepidle integer() yes yes none
keepintvl integer() yes yes none
max integer() s s Set not alowed on
9 €9 y y all platforms.

Ericsson AB. All Rights Reserved.: Kernel | 9

1.3 Logging

nodelay boolean() yes yes none

‘cork' on some
platforms (Linux).
On Darwin this has
adifferent meaning
than on, for instance,

nopush boolean() yes yes

FreeBSD.
Table 2.6: tcp options
Optionsfor level udp:
Other
Option Name Value Type Set Get Requirements and
comments
cork boolean() yes yes none
Table 2.7: udp options
Optionsfor level sct p:
Other
Option Name Value Type Set Get Requirements and
comments
associnfo sctp_assocparams() | yes yes none
autoclose non_neg_integer() yes yes none
disable fragments boolean() yes yes none
events sctp_event_subscribe() yes no none
initmsg sctp_initmsg() yes yes none
maxseg non_neg_integer() yes yes none
nodelay boolean() yes yes none
rtoinfo sctp_rtoinfo() yes yes none

Table 2.8: sctp options

1.3 Logging

Erlang/OTP 21.0 providesastandard API for logging through Logger , whichispart of the Kernel application. Logger
consists of the API for issuing log events, and a customizable backend where log handlers, filters and formatters can
be plugged in.

10 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

By default, the Kernel application installsonelog handler at system start. Thishandler isnamed def aul t . It receives
and processes standard log events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default written to the terminal .

You can also configure the system so that the default handler prints log events to a single file, or to a set of wrap
logsviadi sk_I og.

By configuration, you can also modify or disable the default handler, replace it by a custom handler, and install
additional handlers.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger APl and
functionality in patches following this release. These changes might or might not be backwards compatible with
theinitial version.

1.3.1 Overview
A log event consists of alog level, the message to be logged, and metadata.

The Logger backend forwards log events from the AP, first through a set of primary filters, then through a set of
secondary filters attached to each log handler. The secondary filters are in the following named handler filters.

Each filter set consists of alog level check, followed by zero or more filter functions.

The following figure shows a conceptual overview of Logger. The figure shows two log handlers, but any number
of handlers can be installed.

Ericsson AB. All Rights Reserved.: Kernel | 11

1.3 Logging

]
N

Module Level

ar —
Global Level ~. -

b r h ‘
[) o Config
Global Filters A N
N
, e .
Handler 4 Handler L/
Level Level
Handler Handler
Filters Filters
- g - 4 e Log event flow
- = p Update configuration
Handler Handler
Callback Callback — - — p Look up configuration

Figure 3.1: Conceptual Overview

Log levelsare expressed as atoms. Internally in Logger, the atoms are mapped to integer values, and alog event passes
the log level check if the integer value of itslog level isless than or equal to the currently configured log level. That
is, the check passesif the event is equally or more severe than the configured level. See section Log Level for alisting
and description of all log levels.

The primary log level can be overridden by alog level configured per module. This is to, for instance, allow more
verbose logging from a specific part of the system.

Filter functions can be used for more sophisticated filtering than the log level check provides. A filter function can
stop or pass alog event, based on any of the event's contents. It can also modify all parts of the log event. See section
Filters for more details.

If alog event passesthrough all primary filtersand all handler filtersfor aspecific handler, Logger forwardsthe event to
thehandler callback. The handler formatsand printsthe event to its destination. See section Handlersfor more details.

12 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Everything up to and including the call to the handler callbacks is executed on the client process, that is, the process
where the log event was issued. It is up to the handler implementation if other processes are involved or not.

The handlers are called in sequence, and the order is not defined.

1.3.2 Logger API

The API for logging consists of a set of macros, and a set of functionson theform | ogger : Level / 1, 2, 3, which
areal shortcutsfor | ogger : | og(Level , Argl[, Arg2[, Arg3]]).

The macros are defined inl ogger . hr | , which isincluded in amodule with the directive
-include lib("kernel/include/logger.hrl").

The difference between using the macros and the exported functions is that macros add location (originator)
information to the metadata, and performslazy evaluation by wrapping the logger call in acase statement, soitisonly
evaluated if thelog level of the event passes the primary log level check.

Log Level

Thelog level indicatesthe severity of aevent. In accordance with the Syslog protocol, RFC 5424, eight log levels can
be specified. The following tablelists al possible log levels by name (atom), integer value, and description:

Level I nteger Description

emergency 0 system is unusable

alert 1 action must be taken immediately
critical 2 critical conditions

error 3 error conditions

warning 4 warning conditions

notice 5 normal but significant conditions
info 6 informational messages

debug 7 debug-level messages

Table 3.1: Log Levels

Noticethat theinteger valueis only used internally in Logger. In the API, you must always use the atom. To compare
the severity of two log levels, usel ogger : conpare_| evel s/ 2.

Log Message

The log message contains the information to be logged. The message can consist of a format string and arguments
(given as two separate parametersin the Logger APl), astring or areport.

Example, format string and arguments:
logger:error("The file does not exist: ~ts",[Filename])

Example, string:

Ericsson AB. All Rights Reserved.: Kernel | 13

href

1.3 Logging

logger:notice("Something strange happened!")

A report, which is either amap or akey-valuelist, is the preferred way to log using Logger as it makes it possible for
different backends to filter and format the log event asit needs to.

Example, report:
?LOG_ERROR(#{ user => joe, filename => Filename, reason => enoent })

Reports can be accompanied by a report callback specified in the log event's metadata. The report callback is a
convenience function that the formatter can use to convert the report to a format string and arguments, or directly
to a string. The formatter can also use its own conversion function, if no callback is provided, or if a customized
formatting is desired.

The report callback must be a fun with one or two arguments. If it takes one argument, this is the report itself, and
the fun returns aformat string and arguments:

fun((l ogger:report()) -> {io:format(),[term()]})

If it takes two arguments, the first is the report, and the second is a map containing extra data that allows direct
conversion to a string:

fun((l ogger:report(),l ogger:report_ch_config()) -> unicode: chardata())

The fun must obey the dept h and chars_| i m t parameters provided in the second argument, as the formatter
cannot do anything useful of these parameters with the returned string. The extra data also contains a field named
si ngl e_Il i ne, indicating if the printed log message may contain line breaks or not. This variant is used when the
formatting of the report depends on the size or single line parameters.

Example, report, and metadata with report callback:

logger:debug(#{got => connection request, id => Id, state => State},
#{report _cb => fun(R) -> {"~p",[R]} end})

The log message can also be provided through afun for lazy evaluation. The fun is only evaluated if the primary log
level check passes, and is therefore recommended if it is expensive to generate the message. The lazy fun must return
astring, areport, or atuple with format string and arguments.

Metadata

M etadata contains additional data associated with alog message. Logger inserts some metadata fields by default, and
the client can add custom metadata in three different ways:

Set primary metadata

Primary metadata applies is the base metadata given to al log events. At startup it can be set
using the kernel configuration parameter logger_metadata. At run-time it can be set and updated using
| ogger:set _primary_config/1landl ogger: update prinmary_confi g/ 1 respectively.

Set process metadata

Process metadata is set and updated with | ogger:set_process_netadata/1l and
| ogger : updat e_process_net adat a/ 1, respectively. This metadata applies to the process on which
these calls are made, and Logger adds the metadata to all log events issued on that process.

Add metadata to a specific log event

Metadata associated with one specific log event is given as the last parameter to the log macro or Logger API
function when the event isissued. For example:

14 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

?7LOG_ERROR("Connection closed",#{context => server})

See the description of thel ogger : net adat a() typefor information about which default keys Logger inserts, and
how the different metadata maps are merged.

1.3.3 Filters

Filters can be primary, or attached to a specific handler. Logger calls the primary filters first, and if they all pass, it
calls the handler filters for each handler. Logger calls the handler callback only if all filters attached to the handler
in question also pass.

A filter isdefined as:
{FilterFun, Extra}

whereFi | t er Fun isafunction of arity 2, and Ext r a isany term. When applying thefilter, Logger callsthefunction
with the log event as the first argument, and the value of Ext r a as the second argument. Seel ogger: filter()
for type definitions.

Thefilter function can return st op, i gnor e or the (possibly modified) log event.

If st op isreturned, the log event isimmediately discarded. If the filter is primary, no handler filters or callbacks are
caled. If itisahandler filter, the corresponding handler callback isnot called, but the log event is forwarded to filters
attached to the next handler, if any.

If the log event is returned, the next filter function is called with the returned value as the first argument. That is, if
afilter function modifies the log event, the next filter function receives the modified event. The value returned from
the last filter function is the value that the handler callback receives.

If the filter function returnsi gnor e, it means that it did not recognize the log event, and thus leaves to other filters
to decide the event's destiny.

The configuration optionfi | t er _def aul t specifies the behaviour if al filter functions returni gnor e, or if no
filtersexist.fi |l t er _def aul t isby default settol og, meaningthat if al existing filtersignore alog event, Logger
forwards the event to the handler callback. If fi | t er _def aul t issettost op, Logger discards such events.

Primary filters ae added with logger:add primary filter/2 and removed with
| ogger:renmove_primary_filter/ 1. They can also be added at system start via the Kernel configuration
parameter | ogger .

Handler filters are added with | ogger:add_handler filter/3 and removed with
| ogger:renmove_handl er _filter/2. They canaso be specified directly in the configuration when adding a
handler with | ogger : add_handlI er/ 3 or viathe Kernel configuration parameter | ogger .

To see which filters are currently installed in the system, use |ogger:get_config/0, or
| ogger:get _primary_config/ 0 and| ogger: get _handl er _confi g/ 1. Filters are listed in the order
they are applied, that is, thefirst filter in the list is applied first, and so on.

For convenience, the following built-in filters exist:
| ogger filters: domain/2
Provides away of filtering log events based on adonmai n field in Met adat a.
| ogger filters:level/2
Provides away of filtering log events based on the log level.
| ogger filters:progress/?2

Stops or alows progress reports from super vi sor and appl i cati on_control |l er.

Ericsson AB. All Rights Reserved.: Kernel | 15

1.3 Logging

| ogger filters:renote_gl/2

Stops or alows log events originating from a process that has its group |eader on a remote node.

1.3.4 Handlers

A handler is defined as a module exporting at least the following callback function:
log(LogEvent, Config) -> void()

This function is called when alog event has passed through all primary filters, and all handler filters attached to the
handler in question. The function call is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.

Logger allows adding multiple instances of a handler callback. That is, if a callback module implementation allows
it, you can add multiple handler instances using the same callback module. The different instances are identified by
unique handler identities.

In addition to the mandatory callback function | og/ 2, a handler module can export the optional callback
functionsaddi ng_handl er/ 1,changi ng_confi g/ 3,filter_confi g/ 1l,andrenovi ng_handl er/ 1.
See section Handler Callback Functions in the logger(3) manual page for more information about these function.

The following built-in handlers exist:
| ogger _std_h

Thisisthe default handler used by OTP. Multiple instances can be started, and each instance will write log events
to agiven destination, terminal or file.

| ogger _di sk_l og_h
This handler behaves much likel ogger st d_h, except it usesdi sk_| og asits destination.
error_| ogger

This handler is provided for backwards compatibility only. It is not started by default, but
will be automaticaly started the first time an error | ogger event handler is added with
error _| ogger:add report _handler/1, 2.

Theold err or _| ogger event handlersin STDLIB and SASL till exist, but they are not added by Erlang/
OTP 21.0 or later.

1.3.5 Formatters

A formatter can be used by the handler implementation to do the final formatting of alog event, before printing to
the handler's destination. The handler callback receives the formatter information as part of the handler configuration,
which is passed as the second argument to HVbdul e: | og/ 2.

Theformatter information consist of aformatter module, FModul e and itsconfiguration, FConf i g. FModul e must
export the following function, which can be called by the handler:

format (LogEvent,FConfig)
-> FormattedLogEntry

The formatter information for a handler is set as a part of its configuration when the handler is added.
It can also be changed during runtime with | ogger: set _handl er _confi g(Handl erld, formatter,
{ FModul e, FConfi g}) ., which overwrites the current formatter information, or with
| ogger: update_formatter_confi g/ 2, 3, which only modifies the formatter configuration.

If the formatter module exports the optional callback function check_confi g(FConfi g), Logger calls this
function when the formatter information is set or modified, to verify the validity of the formatter configuration.

16 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

If no formatter information is specified for a handler, Logger uses | ogger formatter as default. See the
| ogger _formatter(3) manua page for moreinformation about this module.

1.3.6 Configuration

At system start, Logger is configured through Kernel configuration parameters. The parameters that apply to Logger
are described in section Kernel Configuration Parameters. Examples are found in section Configuration Examples.

During runtime, Logger configuration is changed via API functions. See section Configuration API Functionsin the
| ogger (3) manual page.

Primary Logger Configuration

Logger API functions that apply to the primary Logger configuration are:

e get_primary_config/0

e set _primary_config/l,2

e update_primary_config/1l

e add_primary_filter/2

e renove primary filter/1

The primary Logger configuration is a map with the following keys:
level = logger:level() | all | none

Specifiesthe primary log level, that is, log event that are equally or more severe than thislevel, are forwarded to
the primary filters. Less severe log events are immediately discarded.

See section Log Level for alisting and description of possible log levels.

Theinitial value of thisoptionisset by theKernel configuration parameter | ogger _I| evel . Itischanged during
runtimewith | ogger: set _primary_config(l evel, Level).

Defaultstonot i ce.

filters = [{Filterld,Filter}]
Specifiesthe primary filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

The initial value of this option is set by the Kernel configuration parameter | ogger. During
runtime, primary filters are added and removed with | ogger:add primary filter/2 and
| ogger:renmove_primary filter/1,respectively.

See section Filters for more detailed information.
Defaultsto[] .
filter_default =1log | stop
Specifies what happensto alog event if all filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultstol og.
nmet adata = net adat a()
The primary metadata to be used for all log calls.
See section Metadata for more information about how this option is used.
Defaultsto#{ } .

Ericsson AB. All Rights Reserved.: Kernel | 17

1.3 Logging

Handler Configuration
Logger API functions that apply to handler configuration are:

« get_handler_config/0,1

e set_handler _config/2,3

e update_handl er _config/2,3

e add_handler filter/3

e renove_handler filter/2

e update formatter _config/2,3

The configuration for a handler is a map with the following keys:
id = logger:handler_id()

Automatically inserted by Logger. The valueisthe same asthe Handl er | d specified when adding the handler,
and it cannot be changed.

nodul e = nodul e()

Automatically inserted by Logger. The value is the same asthe Modul e specified when adding the handler, and
it cannot be changed.

level = logger:level() | all | none

Specifies the log level for the handler, that is, log events that are equally or more severe than this level, are
forwarded to the handler filters for this handler.

See section Log Level for alisting and description of possible log levels.

The log level is specified when adding the handler, or changed during runtime with, for instance,
| ogger: set _handl er _config(Handl erld, | evel, Level).

Defaultstoal | .

filters = [{Filterld, Filter}]
Specifiesthe handler filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

Handler filters are specified when adding the handler, or added or removed during runtime with
| ogger:add_handl er filter/3andl ogger:renmove_handl er filter/2,respectively.

See Filters for more detailed information.
Defaultsto[] .
filter_default =1log | stop
Specifies what happensto alog event if al filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultsto| og.
formatter = {FormatterMdul e, Formatter Confi g}
Specifies aformatter that the handler can use for converting the log event term to a printable string.

e FormatterMdul e = nodul e()
« FormatterConfig = logger:formatter config()

18 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

The formatter information is specified when adding the handler. The formatter configuration can be changed
during runtime with | ogger : updat e_formatter _confi g/ 2, 3, or the complete formatter information
can be overwritten with, for instance, | ogger : set _handl er _confi g/ 3.

See section Formatters for more detailed information.

Defaultsto {| ogger _formatter, Defaul t Formatter Confi g}. Seethel ogger _fornmatter (3)
manual page for information about this formatter and its default configuration.

config = tern()
Handler specific configuration, that is, configuration data related to a specific handler implementation.

The configuration for the built-in handlers is described in the |ogger std h(3) and
| ogger _di sk_| og_h(3) manual pages.

Noticethat| evel andfilt er s areobeyed by Logger itself before forwarding the log eventsto each handler, while
format t er and all handler specific options are left to the handler implementation.

Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:
| ogger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _| evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

With this parameter, you can modify or disable the default handler, add custom handlers and primary logger
filters, set log levels per module, and modify the proxy configuration.

Conf i g isany (zero or more) of the following:

{handl er, default, undefined}
Disables the default handler. This allows another application to add its own default handler.
Only one entry of thistypeisallowed.

{handl er, Handl erld, Mdule, Handl erConfi g}
If Handl er | d isdef aul t , then this entry modifies the default handler, equivalent to calling

logger:remove handler(default)

followed by
logger:add handler(default, Module, HandlerConfig)

For al other values of Handl er | d, this entry adds a new handler, equivalent to calling
logger:add handler(HandlerId, Module, HandlerConfig)

Multiple entries of thistype are allowed.
{filters, FilterDefault, [Filter]}

Adds the specified primary filters.

e FilterDefault = log | stop

Ericsson AB. All Rights Reserved.: Kernel | 19

1.3 Logging

e Filter = {Filterld, {FilterFun, FilterConfig}}
Equivalent to calling

logger:add primary filter(FilterId, {FilterFun, FilterConfig})

foreach Fil ter.
Fi | t er Def aul t specifiesthe behaviour if al primary filtersreturni gnor e, see section Filters.
Only one entry of thistype isallowed.

{nmodul e_| evel, Level, [Mbdul e]}

Sets module log level for the given modules. Equivalent to calling

logger:set module level(Module, Level)

for each Mbdul e.

Multiple entries of thistype are allowed.
{proxy, ProxyConfi g}

Sets the proxy configuration, equivalent to calling

logger:set proxy config(ProxyConfig)

Only one entry of thistypeisallowed.

See section Configuration Examples for examples using thel ogger parameter for system configuration.
| ogger _netadata = nap()

Specifies the primary metadata. See theker nel (6) manual page for more information about this parameter.
| ogger | evel = Level

Specifiesthe primary log level. Seethe ker nel (6) manual page for more information about this parameter.
| ogger _sasl _conpatible = true | false

Specifies Logger's compatibility with SASL Error Logging. See the ker nel (6) manua page for more

information about this parameter.
Configuration Examples

The value of the Kernel configuration parameter | ogger isalist of tuples. It is possible to write the term on the
command line when starting an erlang node, but as the term grows, a better approach isto use the system configuration
file. Seetheconf i g(4) manua page for more information about thisfile.

Each of the following examples shows a simple system configuration file that configures Logger according to the
description.

Modify the default handler to print to afileinstead of st andar d_i o:

[{kernel,
[{logger,
[{handler, default, logger std h, 9% {handler, HandlerId, Module,
#{config => #{file => "log/erlang.log"}}} % Config}
13131

20 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Modify the default handler to print each log event asasingle line:

[{kernel,

[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter, #{single line => true}}}}

113,
Modify the default handler to print the pid of the logging process for each log event:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter,
#{template => [time," ",pid," ",msg,"\n"1}}}}
13131,

Modify the default handler to only print errors and more severelog eventsto "log/erlang.log", and add another handler
to print all log eventsto "log/debug.log”.

[{kernel,
[{logger,
[{handler, default, logger std h,
#{level => error,
config => #{file => "log/erlang.log"}}},
{handler, info, logger std h,
#{level => debug,
config => #{file => "log/debug.log"}}}
131} 1.

1.3.7 Backwards Compatibility with error_logger
Logger provides backwards compatibility with er r or _I ogger inthefollowing ways:
API for Logging
Theerror _| ogger API still exists, but should only be used by legacy code. It will beremoved inalater rel ease.

Cdlstoerror_l ogger:error_report/1,2,error_|l ogger:error_mnsg/ 1, 2, and corresponding
functions for warning and info messages, ae al forwarded to Logger as «cdls to
| ogger: | og(Level, Report, Met adat a) .

Level = error | warning | infoandistakenfrom thefunctionname. Report containstheactual log
message, and Met adat a contains additional information which can be used for creating backwards compatible
eventsfor legacy er r or _| ogger event handlers, see section Legacy Event Handlers.

Output Format

Toget log eventson the sameformat asproduced by er r or _| ogger _tty_handerror_I| ogger _file_h,
usethedefault formatter, | ogger _f or mat t er , with configuration parameter | egacy_header settot r ue.
Thisisthe default configuration of the def aul t handler started by Kernel.

Default Format of Log Events from OTP

By default, all log events originating from within OTP, except the former so called "SASL reports', look the
same as before.

SASL Reports
By SASL reports we mean supervisor reports, crash reports and progress reports.

Prior to Erlang/OTP 21.0, these reports were only logged when the SASL application was running, and they were
printed through SASL's own event handlerssasl _report _tty handsasl _report _file_h.

Ericsson AB. All Rights Reserved.: Kernel | 21

1.3 Logging

The destination of these log events was configured by SASL configuration parameters.
Due to the specific event handlers, the output format slightly differed from other log events.
Asof Erlang/OTP 21.0, the concept of SASL reportsisremoved, meaning that the default behaviour isasfollows:

e Supervisor reports, crash reports, and progress reports are no longer connected to the SASL application.

e Supervisor reports and crash reports areissued aser r or level log events, and are logged through the
default handler started by Kernel.

« Progressreportsareissued asi nf o level log events, and since the default primary log level isnot i ce,
these are not logged by default. To enable printing of progress reports, set the primary log level toi nf o.

e Theoutput format is the samefor all log events.

If the old behaviour is preferred, the Kernel configuration parameter | ogger _sasl _conpat i bl e can be set
totrue. The SASL configuration parameters can then be used as before, and the SASL reports will only be
printed if the SASL application is running, through a second log handler named sasl .

All SASL reports have ametadatafield domai n whichissetto[ot p, sasl] . Thisfield can be used by filters
to stop or alow the log events.

See section SASL User's Guide for more information about the old SASL error logging functionality.
Legacy Event Handlers
To use event handlers written for er r or _| ogger , just add your event handler with

error_logger:add report handler/1,2.

Thisautomatically startsthe error logger event manager, and addser r or _| ogger asahandler to Logger, with
the following configuration:

#{level => info,
filter default => log,
filters => []}.

This handler ignores events that do not originate from the er r or _| ogger API, or from within OTP. This
meansthat if your code usesthe Logger API for logging, then your log eventswill be discarded by thishandler.

The handler is not overload protected.

1.3.8 Error Handling

Logger does, to a certain extent, check its input data before forwarding a log event to filters and handlers. It does,
however, not evaluate report callbacks, or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of alog event, making sure that it does not crash due
to bad input data or faulty callbacks.

If afilter or handler till crashes, Logger will remove thefilter or handler in question from the configuration, and print
ashort error message to the terminal. A debug event containing the crash reason and other detailsis also issued.

See section Log Message for more information about report callbacks and valid forms of log messages.

1.3.9 Example: Add a handler to log info events to file

When starting an Erlang node, the default behaviour isthat all log eventsonlevel not i ce or more severe, arelogged
to the terminal via the default handler. To also log info events, you can either change the primary log level toi nf o:

22 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

1> logger:set primary config(level, info).
ok

or set the level for one or afew modules only:

2> logger:set module level(mymodule, info).
ok

Thisallowsinfo events to pass through to the default handler, and be printed to the terminal aswell. If there are many
info events, it can be useful to print theseto afile instead.

First, set the log level of the default handler to not i ce, preventing it from printing info eventsto the terminal:

3> logger:set handler config(default, level, notice).
ok

Then, add a new handler which prints to file. You can use the handler module | ogger _st d_h, and configure it
tologtofile:

4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"}, level => info}

5> logger:add handler(myhandler, logger std h, Config).

ok

Sincefi |l t er _def aul t defaultstol og, thishandler now receivesall log events. If you want info eventsonly inthe
file, you must add afilter to stop all non-info events. The built-infilter | ogger _filters: | evel / 2 candothis:

6> logger:add handler filter(myhandler, stop non info,
{fun logger filters:level/2, {stop, neq, info}}).
ok

See section Filters for more information about the filtersand thef i | t er _def aul t configuration parameter.

1.3.10 Example: Implement a handler

Section Handler Callback Functions in the logger(3) manua page describes the callback functions that can be
implemented for a Logger handler.

A handler callback module must export:

* log(Log, Config)

It can optionally also export some, or all, of the following:
e addi ng_handl er (Confi g)

e« renovi ng_handl er (Confi Q)

« changi ng_config(Set OrUpdate, O dConfig, NewConfi Q)

« filter_config(Config)

When a handler is added, by for example a call to | ogger: add_handl er(1d, Hwbdule, Config),
Logger first calls HVbdul e: addi ng_handl er (Confi g) . If this function returns { ok, Confi g1}, Logger

writes Conf i g1 to the configuration database, and the | ogger : add_handl er/ 3 call returns. After this, the
handler isinstalled and must be ready to receive log events as callsto HVbdul e: | og/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 23

1.3 Logging

A handler can be removed by cdling |ogger:renove_handler(ld). Logger cals
HModul e: renovi ng_handl er (Confi g), and removes the handler's configuration from the configuration
database.

When | ogger: set _handl er _config/ 2,3 or | ogger:update_handl er _config/2,3 is caled,
Logger calls HVvbdul e: changi ng_confi g(Set Or Updat e, O dConfi g, NewConfi g). If thisfunction
returns { ok, NewConf i g1}, Logger writes NewConf i g1 to the configuration database.

When | ogger:get_config/0 or |ogger:get_handl er_config/0,1 is caled, Logger cals
Hvodul e: fil ter _confi g(Confi g) . Thisfunction must return the handler configuration where internal data
isremoved.

A simple handler that printsto the terminal can be implemented as follows:

-module(myhandlerl).
-export([log/21).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
io:put chars(FModule:format(LogEvent, FConfig)).

Notice that the above handler does not have any overload protection, and all log events are printed directly from the
client process.

For information and examples of overload protection, please refer to section Protecting the Handler from Overload,
and the implementation of | ogger _std_h and| ogger _di sk _log _h.

Thefollowing is asimpler example of a handler which logs to afile through one single process:

-module(myhandler2).
-export([adding handler/1, removing handler/1, log/2]).
-export([init/1, handle call/3, handle cast/2, terminate/2]).

adding handler(Config) ->
MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
{ok, Pid} = gen server:start(?MODULE, MyConfig, [1),
{ok, Config#{config => MyConfig#{pid => Pid}}}.

removing handler(#{config := #{pid := Pid}}) ->
gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
{ok, Fd} = file:open(File, [append, {encoding, utf8}1),
{ok, #{file => File, fd => Fd}}.

handle call(, , State) ->

{reply, {error, bad request}, State}.

handle cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
do log(Fd, LogEvent, Config),
{noreply, State}.

terminate(Reason, #{fd := Fd}) ->
= file:close(Fd),
ok.

do log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->

String = FModule:format(LogEvent, FConfig),
io:put chars(Fd, String).

24 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

1.3.11 Protecting the Handler from Overload

The default handlers, | ogger _std_h and | ogger _di sk_| og_h, feature an overload protection mechanism,
which makes it possible for the handlers to survive, and stay responsive, during periods of high load (when huge
numbers of incoming log requests must be handled). The mechanism works as follows:

Message Queue Length

The handler process keeps track of the length of its message queue and takes some form of action when the current
length exceeds a configurable threshold. The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events. The memory use of the handler
must never grow larger and larger, since that will eventually cause the handler to crash. These three thresholds, with
associated actions, exist:

sync_node_gl en

Aslong as the length of the message queue is lower than this value, all log events are handled asynchronously.
Thismeansthat the client process sending the log event, by calling alog function in the Logger API, does not wait
for aresponse from the handler but continues executing immediately after the event is sent. It is not affected by
thetimeit takesthe handler to print the event to the log device. If the message queue grows larger than thisvalue,
the handler starts handling log events synchronously instead, meaning that the client process sending the event
must wait for aresponse. When the handler reduces the message queue to alevel below thesync_node_ gl en
threshold, asynchronous operation is resumed. The switch from asynchronous to synchronous mode can slow
down the logging tempo of one, or afew, busy senders, but cannot protect the handler sufficiently in a situation
of many busy concurrent senders.

Defaultsto 10 messages.
drop_node_gl en

When the message queue grows larger than this threshold, the handler switches to a mode in which it drops all
new events that senders want to log. Dropping an event in this mode means that the call to the log function never
results in a message being sent to the handler, but the function returns without taking any action. The handler
keeps logging the events that are already in its message queue, and when the length of the message queue is
reduced to a level below the threshold, synchronous or asynchronous mode is resumed. Notice that when the
handler activates or deactivates drop mode, information about it is printed in the log.

Defaultsto 200 messages.
flush_qgl en

If the length of the message queue grows larger than this threshold, a flush (delete) operation takes place. To
flush events, the handler discards the messagesin the message queue by receiving themin aloop without logging.
Client processes waiting for aresponse from asynchronouslog request receive areply from the handler indicating
that the request is dropped. The handler process increases its priority during the flush loop to make sure that no
new events are received during the operation. Notice that after the flush operation is performed, the handler prints
information in the log about how many events have been deleted.

Defaultsto 1000 messages.
For the overload protection algorithm to work properly, it is required that:
sync_node_qgl en =< drop_node_qgl en =< flush_gl en
and that:
drop_node_glen > 1
To disable certain modes, do the following:

 Ifsync_node_ gl enissetto0, all log events are handled synchronously. That is, asynchronous logging is
disabled.

Ericsson AB. All Rights Reserved.: Kernel | 25

1.3 Logging

 Ifsync_node_ql en isset tothe samevaueasdr op_node_ql en, synchronous mode is disabled. That is,
the handler always runsin asynchronous mode, unless dropping or flushing is invoked.

e |Ifdrop_node_ gl enissettothesamevaueasf | ush_gl en, drop modeis disabled and can never occur.
During high load scenarios, the length of the handler message queue rarely grows in a linear and predictable way.
Instead, whenever the handler processis scheduled in, it can have an amost arbitrary number of messages waiting in

the message queue. It isfor this reason that the overload protection mechanism isfocused on acting quickly, and quite
drastically, such asimmediately dropping or flushing messages, when alarge queue length is detected.

The values of the previoudly listed thresholds can be specified by the user. This way, a handler can be configured
to, for example, not drop or flush messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under such circumstances. Another example
of user configuration is when, for performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still acceptable, since it does not affect the
performance of the client processes sending the log events.

A configuration example:

logger:add handler(my standard h, logger std h,
#{config => #{file => "./system info.log",
sync_mode _qlen => 100,
drop_mode qglen => 1000,
flush_qlen => 2000}}).
Controlling Bursts of Log Requests

Large bursts of log events - many events received by the handler under a short period of time - can potentialy cause
problems, such as:

* Logfilesgrow very large, very quickly.
» Circular logs wrap too quickly so that important data is overwritten.
e Write buffers grow large, which slows down file sync operations.

For this reason, both built-in handlers offer the possibility to specify the maximum number of events to be handled
within acertaintime frame. With thisburst control feature enabled, the handler can avoid choking thelog with massive
amounts of printouts. The configuration parameters are:

burst limt_enable
Vauet r ue enables burst control and f al se disablesit.
Defaultstot r ue.

burst limt_max_count

This is the maximum number of eventsto handle withinaburst _|imt_w ndow ti me timeframe. After
the limit is reached, successive events are dropped until the end of the time frame.

Defaultsto 500 events.

burst _limt_wi ndow_ tinme
See the previous description of bur st _[imt_max_count.
Defaultsto 1000 milliseconds.

A configuration example:

logger:add handler(my disk log h, logger disk log h,
#{config => #{file => "./my disk log",
burst limit enable => true,
burst limit max count => 20,
burst limit window time => 500}}).

26 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Terminating an Overloaded Handler

It is possible that a handler, even if it can successfully manage peaks of high load without crashing, can build up a
large message queue, or use a large amount of memory. The overload protection mechanism includes an automatic
termination and restart feature for the purpose of guaranteeing that a handler does not grow out of bounds. The feature
is configured with the following parameters:

overl oad_kill _enabl e
Vauet r ue enablesthefeatureand f al se disablesit.
Defaultstof al se.

overload kill _qglen

Thisis the maximum allowed queue length. If the message queue grows larger than this, the handler processis
terminated.

Defaultsto 20000 messages.
overl oad_kill_nem si ze

This is the maximum memory size that the handler process is alowed to use. If the handler grows larger than
this, the processis terminated.

Defaultsto 3000000 bytes.
overload kill _restart_after

If the handler isterminated, it restarts automatically after adelay specified in milliseconds. Thevaluei nfi nity
prevents restarts.

Defaultsto 5000 milliseconds.

If the handler process is terminated because of overload, it prints information about it in the log. It aso prints
information about when arestart has taken place, and the handler is back in action.

The sizes of the log events affect the memory needs of the handler. For information about how to limit the size of
log events, seethel ogger _f ormatt er (3) manual page.

1.3.12 Logger Proxy

The Logger proxy is an Erlang process which is part of the Kernel application's supervision tree. During startup, the
proxy process registers itself asthe syst em | ogger , meaning that log events produced by the emulator are sent
to this process.

When alog event isissued on aprocess which hasitsgroup leader on aremote node, L ogger automatically forwardsthe
log event to the group leader's node. To achievethis, it first sendsthelog event as an Erlang message from the original
client processto the proxy on the local node, and the proxy in turn forwards the event to the proxy on the remote node.

When receiving alog event, either from the emulator or from a remote node, the proxy calls the Logger APl to log
the event.

The proxy processisoverload protected in the same way as described in section Protecting the Handler from Overload,
but with the following default values:

Ericsson AB. All Rights Reserved.: Kernel | 27

1.4 Logging Cookbook

#{sync_mode glen => 500,
drop_mode glen => 1000,
flush _qlen => 5000,
burst limit enable => false,
overload kill enable => false}

For log events from the emulator, synchronous message passing mode is not applicable, since all messages are passed
asynchronously by the emulator. Drop mode is achieved by setting the syst em | ogger to undef i ned, forcing
the emulator to drop events until it is set back to the proxy pid again.

The proxy uses er | ang: send_nosuspend/ 2 when sending log events to a remote node. If the message could
not be sent without suspending the sender, it is dropped. Thisisto avoid blocking the proxy process.

1.3.13 See Also

disk_1og(3), erlang(3), error_logger(3), | ogger (3), | ogger _di sk_| og_h(3),
| ogger _filters(3),logger formatter(3),l ogger_std _h(3),sasl (6)

1.4 Logging Cookbook

Using and especially configuring Logger can be difficult at times as there are many different options that can be
changed and often more than one way to achieve the same result. This User's Guide tries to help by giving many
different examples of how you can use logger.

For more examples of practical use-cases of using Logger, Fred Hebert's blog post Erlang/OTP 21's new logger is
agreat starting point.

If you find that some common Logger usage is missing from this guide, please open a pull request on github with
the suggested addition

1.4.1 Get Logger information

Print the primary Logger configurations.

1> logger:i(primary).
Primary configuration:
Level: notice
Filter Default: log
Filters:
(none)

It isalso possible to fetch the configuration using | ogger: get _primary_config().

See also

* logger:i()
» Configurationin the Logging User's Guide

28 | Ericsson AB. All Rights Reserved.: Kernel

href

1.4 Logging Cookbook

Print the configuration of all handlers.

2> logger:i(handlers).
Handler configuration:
Id: default
Module: logger std h
Level: all
Formatter:
Module: logger formatter
Config:
legacy header: true
single line: false
Filter Default: stop
Filters:
Id: remote gl
Fun: fun logger filters:remote gl/2
Arg: stop
Id: domain
Fun: fun logger filters:domain/2
Arg: {log,super, [otp,sasl]}
Id: no domain
Fun: fun logger filters:domain/2
Arg: {log,undefined,[]}
Handler Config:
burst limit enable: true
burst limit max count: 500
burst limit window time: 1000
drop _mode qlen: 200
filesync repeat interval: no_ repeat
flush _glen: 1000
overload kill enable: false
overload kill mem size: 3000000
overload kill glen: 20000
overload kill restart after: 5000
sync_mode qlen: 10
type: standard io

You can also print the configuration of a specific handler using
| ogger:i (Handl er Nane), or fetch the configuration using | ogger: get handl er _config(), or
| ogger: get _handl er _confi g(Handl er Nane) for aspecific handler.

See also

« logger:i()
« Configurationin the Logging User's Guide

1.4.2 Configure the Logger

Where did my progress reports go?

In OTP-21 the default primary log level isnot i ce. The means that many log messages are by default not printed.
This includes the progress reports of supervisors. In order to get progress reports you need to raise the primary log
level toi nfo

$ erl -kernel logger level info

=PROGRESS REPORT==== 4-Nov-2019::16:33:11.742069 ===
application: kernel
started at: nonode@nohost

=PROGRESS REPORT==== 4-Nov-2019::16:33:11.746546 ===
application: stdlib
started at: nonode@nohost

Eshell V10.5.3 (abort with "G)

1>

Ericsson AB. All Rights Reserved.: Kernel | 29

1.4 Logging Cookbook

1.4.3 Configure Logger formatter

In order to fit better into your existing logging infrastructure Logger can format its logging messages any way you
want to. Either you can use the built-in formatter, or you can build your own.

Single line configuration

Since single line logging is the default of the built-in formatter you only have to provide the empty map as the
configuration. The example below usesthe sys. conf i g to change the formatter configuration.

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ formatter => {logger formatter, #{ }}}}1}1}].

$ erl -config sys
Eshell V10.5.1 (abort with "G)
1> logger:error("Oh noes, an error").
1962-10-03T11:07:47.466763-04:00 error: Oh noes, an error

However, if you just want to change it for the current session you can also do that.

1> logger:set handler config(default, formatter, {logger formatter, #{}}).
ok
2> logger:error("Oh noes, another error").
1962-10-04T15:34:02.648713-04:00 error: Oh noes, another error

See also

* logger_formatter's Configuration

» Formattersin the Logging User's Guide

e logger:set _handler _config/3

Add file and line number to log entries
Y ou can change what is printed to the log by using the formatter template:

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ formatter => {logger formatter,
#{ template => [time," ", file,":",line," ",level,": ",msg,"\n"] }}}}1}1}1.
$ erl -config sys
Eshell V10.5.1 (abort with ~G)
1> logger:error("0Oh noes, more errors",#{ file => "shell.erl", line => 1 }).
1962-10-05T07:37:44.104241+02:00 shell.erl:1 error: Oh noes, more errors

Note that file and line have to be added in the metadata by the caller of | ogger : | og/ 3 as otherwise Logger will
not know from where it was called. The file and line number are automatically added if you use the ?LOG_ERROR
macrosinker nel /i ncl ude/ | ogger. hrl .

See also

« logger_formatter's Configuration

* logger_formatter's Template

e Logger Macros

* Metadatain the Logging User's Guide

30 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

1.4.4 Configuring handlers

Print logs to a file
Instead of printing the logs to stdout we print them to arotating file log.

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ config => #{ file => "log/erlang.log",
max_no_bytes => 4096,
max_no_files => 5},
formatter => {logger formatter, #{}}}}1}1}1.

$ erl -config sys

Eshell V10.5.1 (abort with ~G)

1> logger:error("0Oh noes, even more errors").

ok

2> erlang:halt().

$ cat log/erlang.log

2019-10-07T11:47:16.837958+02:00 error: Oh noes, even more errors

See also
e logger_std h's Description
» Handlersinthe Logging User's Guide

Debug only handler

Add ahandler that prints debug log eventsto afile, while the default handler prints only upto not i ce level events
to standard out.

$ cat sys.config
[{kernel,
[{logger level, all},
{logger,
[{handler, default, logger std h,
#{ level => notice }},
{handler, debug, logger std h,
#{ filters => [{debug,{fun logger filters:level/2, {stop, neq, debug}}}I],
config => #{ file => "log/debug.log" } }}

131} 1.
$ erl -config sys
Eshell V10.5.1 (abort with "G)
1> logger:error("Oh noes, even more errors").
=ERROR REPORT==== 9-0ct-2019::14:40:54.784162 ===
Oh noes, even more errors
ok
2> logger:debug("A debug event").
ok
3> erlang:halt().
$ cat log/debug.log
2019-10-09T14:41:03.680541+02:00 debug: A debug event

In the configuration above we first raise the primary log level to max in order for the debug log events to get to the
handlers. Then we configure the default handler to only log notice and bel ow events, the default log level for ahandler
isal | . Then the debug handler is configured with afilter to stop any log message that is not a debug level message.

Itisalso possibleto do the same changesin an aready running systemusingthel ogger module. Thenyou do likethis:

Ericsson AB. All Rights Reserved.: Kernel | 31

1.4 Logging Cookbook

$ erl

1> logger:set handler config(default, level, notice).

ok

2> logger:add handler(debug, logger std h, #{
filters => [{debug,{fun logger filters:level/2, {stop, neq, debug}}}1],
config => #{ file => "log/debug.log" } }).

ok

3> logger:set primary config(level, all).

ok

Itisimportant that you do not raise the primary log level before adjusting the default handler'slevel as otherwise your
standard out may be flooded by debug log messages.

See also

* logger_std h's Description

» Filtersin the Logging User's Guide

1.4.5 Logging
What to log and how

The simplest way to log something is by using the Logger macros and give areport to the macro. For exampleif you
want to log an error:

?7LOG_ERROR(#{ what => http error, status => 418, src => ClientIP, dst => ServerIP }).
Thiswill print the following in the default log:

=ERROR REPORT==== 10-0ct-2019::12:13:10.089073 ===
dst: {8,8,4,4}
src: {8,8,8,8}
status: 418
what: http error

or the below if you use asingle line formatter:
2019-10-10T12:14:11.921843+02:00 error: dst: {8,8,4,4}, src: {8,8,8,8}, status: 418, what: http error

See also
e Log Message in the Logging User's Guide

Report call-backs and printing of events

If you want to do structured logging, but still want to have some control of how the final log message is formatted you
cangivear eport _cb aspart of the metadata with your log event.

ReportCB = fun(#{ what := What, status := Status, src := Src, dst := Dst }) ->
{ok, #hostent{ h name = SrcName }} inet:gethostbyaddr(Src),
{ok, #hostent{ h name = DstName }} inet:gethostbyaddr(Dst),

{"What: ~p~nStatus: ~p~nSrc: ~s (~s)~nDst: ~s (~s)~n",
[What, Status, inet:ntoa(Src), SrcName, inet:ntoa(Dst), DstName]}

end,
?7LOG_ERROR(#{ what => http error, status => 418, src => ClientIP, dst => ServerIP },
#{ report cb => ReportCB }).

Thiswill print the following:

32| Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

=ERROR REPORT==== 10-0ct-2019::13:29:02.230863 ===
What: http error

Status: 418

Src: 8.8.8.8 (dns.google)

Dst: 192.121.151.106 (erlang.org)

Note that the order that things are printed have changed, and also | added a reverse-dns lookup of the |P address. This
will not print as nicely when using asingle line formatter, however you can also use areport_cb fun with 2 arguments
where the second argument is the formatting options.

See also
* Log Message in the Logging User's Guide
* Logger Report Callbacks

1.4.6 Filters

Filters are used to remove or change log events before they reach the handlers.

Process filters

If we only want debug messages from a specific processit is possible to do this with afilter like this:

%% Initial setup to use a filter for the level filter instead of the primary level
PrimaryLevel = maps:get(level, logger:get primary config()),
ok = logger:add primary filter(primary level,
{fun logger filters:level/2, {log, gteq, PrimaryLevel}}),
logger:set primary config(filter default, stop),
logger:set primary config(level, all),

%% Test that things work as they should
logger:notice("Notice should be logged"),
logger:debug("Should not be logged"),

%% Add the filter to allow PidToLog to send debug events

PidToLog = self(),

PidFilter = fun(LogEvent,) when PidTolLog =:= self() -> LogEvent;
(_LogEvent,) -> ignore end,

ok = logger:add primary filter(pid, {PidFilter,[]}),

logger:debug("Debug should be logged").

There is abit of setup needed to alow filters to decide whether a specific process should be allowed to log. Thisis
because the default primary log level is notice and it is enforced before the primary filters. So in order for the pid filter
to be useful we have to raise the primary log level to al | and then add alevel filter that only lets certain messages at
or greater than notice through. When the setup is done, it is simple to add afilter that allows a certain pid through.

Note that doing the primary log level filtering through afilter and not through the level is quite alot more expensive,
so make sure to test that your system can handle the extra load before you enable it on a production node.

See also

« Filtersin the Logging User's Guide

e logger filters:level/2

e logger:set primary _config/2

Domains

Domains are used to specify which subsystem a certain log event originates from. The default handler will by default
only log events with the domain [ot p] or without a domain. If you would like to include SSL log events into the
default handler log you could do this:

Ericsson AB. All Rights Reserved.: Kernel | 33

1.5 EEP-48: Documentation storage and format

1> logger:add handler filter(default,ssl domain,
{fun logger filters:domain/2,{log,sub,[otp,ssl]}}).
2> application:ensure all started(ssl).
{ok, [crypto,asnl,public_key,ssl]}
3> ssl:connect("www.erlang.org",443, [{log level,debug}]).
%% lots of text

See also

» Filtersin the Logging User's Guide

« logger filters:donain/2

e logger:set _primary config/2

1.5 EEP-48: Documentation storage and format

This User's Guide describes the documentation storage format initially described in EEP-48. By standardizing how
API documentation is stored, it will be possible to write tools that work across languages.

To fetch the EEP-48 documentation for amodule you can use code: get _doc/ 1.
To render the EEP-48 documentation for an Erlang module you canuseshel | _docs: render/ 2.

1.5.1 the "Docs" storage
To look for documentation for a module name example, atool should:

Look for exanpl e. beamin the code path, parse the BEAM file and retrieve the Docs chunk. If the chunk is not
available, it should look for "example.beam" in the code path and find the doc/ chunks/ exanpl e. chunk filein
the application that definestheexanpl e module. If a.chunk fileisnot available, then documentation isnot available.

The choice of using a chunk or the filesystem is completely up to the language or library. In both cases, the
documentation can be added or removed at any moment by stripping the Docs chunk or by removing the doc/chunks
directory.

For example, languages like Elixir and LFE attach the Docs chunk at compilation time, which can be controlled via
a compiler flag. On the other hand, projects like OTP itself will likely generate the doc/chunks entries on a separate
command, completely unrelated from code compilation.

1.5.2 the "Docs" format

In both storages, the documentation is written in the exactly same format: an Erlang term serialized to binary via
term t o_bi nary/ 1. Theterm may be optionally compressed when serialized. It must follow the type specification
below:

{docs vl1,

Anno :: erl _anno:anno(),

BeamLanguage :: atom(),

Format :: binary(),

ModuleDoc :: #{DocLanguage := DocValue} | none | hidden,
Metadata :: map(),

Docs ::

[{{Kind, Name, Arity},
Anno :: erl _anno:anno(),
Signature :: [binary()],
Doc :: #{DocLanguage :=
Metadata :: map()

}1} when DoclLanguage :: binary(),

DocValue :: binary() | term()

DocValue} | none | hidden,

where in the root tuple we have:

34 | Ericsson AB. All Rights Reserved.: Kernel

href

1.5 EEP-48: Documentation storage and format

Anno

annotation (line, column, file) of the definition itself (seeer | _anno(3))
BeamLanguage

an atom representing the language, for example: erlang, elixir, Ife, alpaca, etc
Format

the mime type of the documentation, such as <<"text/markdown">> or <<"application/erlang+html">>. For
details of the format used by Erlang see the EEP- 48 Chapt er in Erl_Docgen's User's Guide.
ModuleDoc
amap with the documentation language as key, such as<<" en" >> or <<" pt _BR" >>, and the documentation
asabinary vaue. It may be the atom none in case there is no documentation or the atom hi dden if
documentation has been explicitly disabled for this entry.
Metadata
amap of atom keys with any term as value. This can be used to add annotations like the aut hor s of a
module, depr ecat ed, or anything else alanguage or documentation tool may find relevant.
Docs
alist of documentation for other entities (such as functions and types) in the module.

For each entry in Docs, we have:

{Kind, Name, Arity}
the kind, name and arity identifying the function, callback, type, etc. The official entitiesare: f unct i on,
type and cal | back. Other languages will add their own. For instance, Elixir and LFE may add macro.
Anno
annotation (line, column, file) of the module documentation or of the definition itself (seeer | _anno(3)).
Signature
the signature of the entity. It isisalist of binaries. Each entry represents a binary in the signature that
can be joined with awhitespace or anewline. For example, [<<" bi nary_t o_at on(Bi nary,
Encodi ng) " >>, <<"when is_binary(Bi nary)">>] may berendered asasingleline or two lines.
It exists exclusively for exhibition purposes.
Doc
amap with the documentation language as key, such as <<"en">> or <<"pt_BR">>, and the documentation
as avalue. The documentation may either be abinary or any Erlang term, both described by For mat . If itis
an Erlang term, then the Format must be <<"application/erlang+SUFFI X" ,>> such as <<"application/erlang
+html">> when the documentation is an Erlang representation of an HTML document. The Doc may also
be atom none in case there is no documentation or the atom hi dden if documentation has been explicitly
disabled for this entry.
Metadata
amap of atom keys with any term as value.

This shared format is the heart of the EEP asiit is what effectively allows cross-language collaboration.

The Metadata field exists to alow languages, tools and libraries to add custom information to each entry. This EEP
documents the following metadata keys:

authors := [binary()]
alist of authors as binaries.
cross _references := [module() | { module(), {Kind, Name, Arity}}]
alist of modules or module entries that can be used as cross references when generating documentation.
deprecated ;= binary()
when present, it means the current entry is deprecated with a binary that represents the reason for deprecation
and a recommendation to replace the deprecated code.
since := binary()
abinary representing the version such entry was added, such as <<"1.3.0">> or <<"20.0">>.
edit_url := binary()
abinary representing a URL to change the documentation itself.

Ericsson AB. All Rights Reserved.: Kernel | 35

1.5 EEP-48: Documentation storage and format

Any key may be added to Metadata at any time. Keys that are frequently used by the community can be standardized
in future versions.

1.5.3 See Also

erl _anno(3), shell _docs(3), EEP-48 Chapter in Erl_Docgen's User's (uide,
code: get _doc/1

36 | Ericsson AB. All Rights Reserved.: Kernel

1.5 EEP-48: Documentation storage and format

2 Reference Manual

Ericsson AB. All Rights Reserved.: Kernel | 37

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

* Global name service

e Supervision of Erlang/OTP

e Communication with sockets

e Operating system interface

Logger Handlers

Two standard logger handlers are defined in the Kernel application. These are described in the Kernel User's Guide,
andinthel ogger _std_h(3) andl ogger _di sk_| og_h(3) manual pages.

OS Signal Event Handler

Asynchronous OS signals may be subscribed to viathe Kernel applications event manager (see OTP Design Principles
andgen_event (3)) registeredaser | _si gnal _ser ver . A default signal handler isinstalled which handlesthe
following signals:

sigusrl

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalentto callinger | ang: hal t (" Recei ved SI GUSR1").

sigquit

The default handler will halt Erlang immediately. Thisis equivalent to callinger | ang: hal t () .
sigterm

The default handler will terminate Erlang normally. Thisis equivalent to callingi ni t: st op() .

Events
Any event handler added to er | _si gnal _ser ver must handle the following events.
si ghup
Hangup detected on controlling terminal or death of controlling process
si gquit
Quit from keyboard
si gabrt
Abort signal from abort
sigalrm

Timer signal from alarm

38| Ericsson AB. All Rights Reserved.: Kernel

kernel

sigterm
Termination signal
sigusrl
User-defined signal 1
si gusr2
User-defined signal 2
sigchl d
Child process stopped or terminated
si gstop
Stop process
sigtstp
Stop typed at terminal
Setting OS signals are described in 0s: set _si gnal / 2.

Configuration

The following configuration parameters are defined for the Kernel application. For more information about

configuration parameters, seefileapp(4) .
connect _all = true | false

If enabled (t r ue), which also is the default, gl obal (3) will actively connect to al nodes that becomes
knowntoit. Notethat you also want to enablepr event _over | appi ng_parti ti ons inorderforgl obal
to ensure that a fully connected network is maintained. pr event _over | appi ng_partitions will aso
prevent inconsistenciesin gl obal 's name registration and locking.

The now deprecated command line argument - connect _al |l <bool ean> has the same effect as the
connect _al | configuration parameter. If this configuration parameter isdefined, it will override the command

line argument.
distributed = [Distrib]

Specifieswhich applicationsthat are distributed and on which nodesthey are allowed to execute. In thisparameter:
e Distrib = {App, Nodes} | {App, Ti me, Nodes}

* App = aton()
« Tinme = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed in appl i cati on: | oad/ 2.

di st _auto_connect = Val ue

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never

Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3).

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter

be explicitly connected. Seenet _ker nel (3) .

Ericsson AB. All Rights Reserved.: Kernel | 39

kernel

perm ssions = [Pern
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

e« Appl Nane = aton()
e Bool = bool ean()

Permissions are described inappl i cati on: permi t/ 2.
| ogger = [Confi]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _| evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

Thel ogger parameter isdescribed in section Logging in the Kernel User's Guide.
| ogger | evel = Level

Specifies the primary log level for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the Kernel User's Guide for more information about Logger and

log levels.
Level = energency | alert | critical | error | warning | notice | info |
debug | all | none

To changethe primary log level at runtime, usel ogger: set _pri mary_config(l evel, Level).
Defaultstonot i ce.
| ogger _net adata = Met adat a
Specifies primary metadata for log events.
Met adata = map()
Defaultsto#{} .
| ogger _sasl _conpatible = true | false

Specifiesif Logger behaves backwards compatible with the SASL error logging functionality from releases prior
to Erlang/OTP 21.0.

If this parameter is set to t r ue, the default Logger handler does not log any progress-, crash-, or supervisor
reports. If the SASL application is then started, it adds a Logger handler named sasl , which logs these events
according to values of the SASL configuration parameter sasl _error _| ogger andsasl _errl og_type.

See section Deprecated Error Logger Event Handlersand Configurationinthe sasl(6) manual pagefor information
about the SASL configuration parameters.

See section SASL Error Logging in the SASL User's Guide, and section Backwards Compatibility with
error_logger in the Kernel User's Guide for information about the SASL error logging functionality, and how
Logger can be backwards compatible with this.

Defaultstof al se.

If this parameter issettot rue, sasl _errl og_t ype indicates that progress reports shall be logged, and
the configured primary log level isnot i ce or more severe, then SASL automatically sets the primary log
level toi nf 0. That is, this setting can potentially overwrite the value of the Kernel configuration parameter
| ogger _| evel . Thisis to allow progress reports, which have log level i nf o, to be forwarded to the
handlers.

40 | Ericsson AB. All Rights Reserved.: Kernel

kernel

gl obal _groups = [G oupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:
e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupName = atom()
e PublishType = normal | hidden
* Node = node()
net default _connect _options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .
net _default_listen_options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .

net dist_use_ interface = ip_address()

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess() , seei net (3).

First
Last

net _dist listen_nin
net dist_listen_nax

Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.

net _dist_listen_options = Opts

Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/2.

net _di st_connect _options = Opts

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_t cp: connect/ 4.

net parse_error_log = silent
If set, no log events are issued when erroneous lines are found and skipped in the various Inet configuration files.

netrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gurati on inthe
ERTS User's Guide.

net _setuptime = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net ticker_spawn_options = Opts

Defines alist of extra spawn options for net ticker processes. There exist one such process for each connection
to another node. A net ticker process is responsible for supervising the connection it is associated with. These
processes also execute the distribution handshake protocol when setting up connections. When there is a large
number of distribution connections, setting up garbage collection options can be hel pful to reduce memory usage.
Defaultis[link, {priority, max}], and thesetwo options cannot be changed. The noni t or and
{noni tor, MonitorOpts} optionsarenot alowed and will be dropped if present. See the documentation

Ericsson AB. All Rights Reserved.: Kernel | 41

kernel

of theer | ang: spawn_opt / 4 BIF for information about valid options. If the Opt s list isnot aproper list, or
containing invalid options the setup of connections will fail.

Note that the behavior described above is only true if the distribution carrier protocol used is implemented
as described in ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module without further alterations. The implementer of the distribution carrier protocol used, may
have chosen to ignore the net _ti cker _spawn_opt i ons parameter or altered its behavior. Currently all
distribution modules shipped with OTP do, however, behave as described above.

net _tickintensity = NetTicklntensity

Net tick intensity specifies how many ticks to send during a net tick time period when no other data is sent
over a connection to another node. This also determines how often to check for data from the other node. The
higher net tick intensity, the closer to the chosen net tick time period the node will detect an unresponsive node.
The net tick intensity defaults to 4. The value of Net Ti ckl nt ensi ty should be an integer in the range
4. .1000. If the Net Ti ckl nt ensi ty isnot an integer or an integer less than 4, 4 will silently be used. If
Net Ti ckl nt ensi ty isaninteger larger than 1000, 1000 will silently be used.

Note that all communicating nodes are expected to use the same net tick intensity as well as the same net
tick time.

Be careful not to set atoo high net tick intensity, since you can overwhelm the node with work if it is set
too high.

net _ticktine = NetTickTine

Specifies the net tick time in seconds. This is the approximate time a connected node may be unresponsive until
it is considered down and thereby disconnected.

Net tick time together with net tick intensity determines an interval Ti ckl nt erval = Net Ti ckTi me/
Net Ti ckl nt ensi ty. Once every Ti ckl nt er val seconds, each connected node is ticked if nothing has
been sent to it during that last Ti ckl nt er val seconds. A tick is a small package sent on the connection. A
connected node is considered to be down if no ticks or payload packages have been received during the last
Net Ti ckl nt ensi ty number of Ti ckl nt erval seconds intervals. This ensures that nodes that are not
responding, for reasons such as hardware errors, are considered to be down.

As the availability is only checked every Ti ckl nt er val seconds, the actual time T a node have been
unresponsive when detected may vary between M nT and Max T, where:

MinT
MaxT

NetTickTime - NetTickTime / NetTickIntensity
NetTickTime + NetTickTime / NetTickIntensity

Net Ti ckTi ne defaultsto 60 secondsand Net Ti ckl nt ensi t y defaultsto4. Thus, 45 < T < 75 seconds.

Noticethat all communicating nodesareto havethesameNet Ti ckTi me andNet Ti ckl nt ensi ty values
specified, as it determines both the frequency of outgoing ticks and the expected frequency of incominging
ticks.

42 | Ericsson AB. All Rights Reserved.: Kernel

kernel

Net TickTime needs to be a multiple of NetTickintensity. If the configured
values are not, Net Ti ckTi ne will internally be rounded up to the nearest millisecond.
net _kernel : get_net _ticktine() will, however, report net tick time truncated to the nearest second.

Normally, aterminating node is detected immediately by the transport protocol (like TCF/IP).
prevent _overl apping_partitions = true | false

If enabled (t r ue), gl obal will actively prevent overlapping partitions from forming when connections are
lost between nodes. This fix is enabled by default. If you are about to disable this fix, make sure to read the
gl obal (3) documentation about this fix for more important information about this.

shutdown_timeout = integer() | infinity

Specifiesthetimeappl i cati on_contr ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutaly killsappl i cati on_nast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_opti onal = [NodeNane]

Specifies which other nodes that can be alive for this node to start properly. If some nodeinthislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes _tinmeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter is undefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

start _distribution = true | fal se

Starts al distribution services, such as r pc, gl obal , and net _ker nel if the parameter is t r ue. This
parameter isto be set to f al se for systems who want to disable all distribution functionality.

Defaultstot r ue.
start_dist_ac = true | false

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start _boot _server = true | false

Startstheboot _ser ver if the parameterist r ue (seeer| _boot _server (3)). Thisparameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot server_slaves = [Sl avel P

If configuration parameter start boot server is true, this parameter can be used to initialize
boot server withalist of slave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.

Examples of Sl avel P inatom, string, and tuple form:

' 150. 236. 16. 70, "150, 236, 16, 70", {150, 236, 16, 70}.

Defaultsto[] .

Ericsson AB. All Rights Reserved.: Kernel | 43

kernel

start_disk log = true | false

Startsthe di sk_1 og_ser ver if the parameter ist r ue (seedi sk_I og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.
start_pg = true | false

Starts the default pg scope server (see pg(3)) if the parameter ist r ue. This parameter istobe settot r ue
in an embedded system that uses this service.

Defaultstof al se.
start_timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobesettotr ue in
an embedded system using this service.

Defaultstof al se.
shel | _history = enabled | disabled | nodul e()

Specifies whether shell history should be logged to disk between usages of er | (enabl ed), not logged at all
(di sabl ed), or a user-specified module will be used to log shell history. This module should export | oad()
-> [string()] returningalist of stringsto load in the shell wheniit starts, and add(i odata()) -> ok.
called every time new line is entered in the shell. By default logging is disabled.

shel | _history_drop = [string()]

Specific log lines that should not be persisted. For example["q().", "init:stop()."] will alow to
ignore commands that shut the node down. Defaultsto[] .

shell _history file_bytes = integer()
How many bytesthe shell should remember. By default, the valueis set to 512kb, and the minimal valueis 50kb.
shel |l _history path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
fil enane: basedi r(user_cache, "erlang-history").

shut down_func = {Mdd, Func}
Where:
e Md = atom()
e Func = atom()

Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as
Mod: Func(Reason) ,whereReason istheterminatereasonforappl i cati on_contr ol | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

source_search_rules = [DirRule] | [SuffixRule]
Where:
e DirRule = {ObjDirSuffix, SrchirSuffix}
o SuffixRule = {CbjSuffix,SrcSuffix,[DirRule]}
e ObjDirsuffix = string()
e SrcDhirSuffix = string()
e ObjSuffix = string()
e SrcSuffix = string()

44 | Ericsson AB. All Rights Reserved.: Kernel

kernel

Specifies alist of rulesfor useby filelib:find_file/2filelib:find _source/?2 If thisissetto
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
suchas{"ebin", "src"},whichareusedbyfilelib:find_file/2,ortriplesspecifying separate
directory suffix rules depending on file name extensions, for example[{ " . beant, ".erl", [{"ebin",

"src"}]},whichareusedbyfil elib:find_source/2.Bothkindsof rulescan be mixed in thelist.

The interpretation of Cbj Di r Suf fi x and SrcDi r Suf fi x is as follows: if the end of the directory name
where an object islocated matches Obj Di r Suf f i x, then the name created by replacing Cbj Di r Suf f i x with
SrcDir Suffix isexpanded by callingfil elib:w | dcard/ 1, and thefirst regular file found among the
matchesis the sourcefile.

standard_i o_encodi ng = Encodi ng

Set whether bytes sent or received via standard_io should be interpreted as unicode or latinl. By default input
and output isinterpreted as Unicodeif it is supported on the host. With this flag you may configure the encoding
on startup.

Thisworkssimilarly toi 0: set opt s(standard_i o, {encodi ng, Encodi ng}) butisapplied before
any bytes on standard_io may have been read.

Encoding is one of:
uni code

Configure standard_io to use unicode mode.
latinl

Configure standard _io to use latinl mode.

Anything other than unicode or latinl will be ignored and the system will configure the encoding by itself,
typically unicode on modern systems.

See Escripts and non-interactive 1/0 in Unicode Usage in Erlang for more details.

Deprecated Configuration Parameters

In Erlang/OTP 21.0, anew API for logging was added. Theold er r or _| ogger event manager, and event handlers
running on this manager, still work, but they are no longer used by default.

The following application configuration parameters can still be set, but they are only used if the corresponding
configuration parameters for Logger are not set.

error_| ogger
Replaced by setting thet ype, and possibly f i | e and nodes parameters of the default | ogger _std_h
handler. Example:

erl -kernel logger '[{handler,default,logger std h,#{config=>#{file=>"/tmp/erlang.log"}}}]"

error_| ogger _format_depth
Replaced by setting the dept h parameter of the default handlers formatter. Example:

erl -kernel logger '[{handler,default,logger std h,#{formatter=>{logger formatter,#{legacy header=>true

See Backwards compatibility with error_logger for more information.

Ericsson AB. All Rights Reserved.: Kernel | 45

kernel

See Also

app(4), application(3), code(3), disk log(3), erl_boot _server(3), erl _ddll(3),
file(3), global (3), global group(3), heart(3), inet(3), |ogger(3), net_kernel (3),
0s(3),pg(3),rpc(3),seq_trace(3),tiner(3)

46 | Ericsson AB. All Rights Reserved.: Kernel

app

app

Name

The application resour ce file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Appl i cat i on. app for each application Appl i cati on in
the system.

Thefileisread by the application controller when an application is loaded/started. It is also used by the functionsin

syst ool s, for example when generating start scripts.

File Syntax

The application resource file is to be called Appl i cat i on. app, where Appl i cat i on is the application name.

Thefileisto belocated in directory ebi n for the application.

The file must contain a single Erlang term, which is called an application specification:

Appl i cation

{application, Application,

[{description, Description},
{id, Id},

{vsn, Vsn},
{modules, Modules},
{maxP, MaxP},

{maxT, MaxT},
{registered, Names},

{included applications, Apps},
{optional applications, Apps},

{applications, Apps},

{env,
{mod,

{start phases, Phases},

Env},
Start},

{runtime dependencies, RTDeps}]}.

Default

[1
infinity
infinity

[1

undefined

Value
Application atom()
Description string()
Id string()
Vsn string()
Modules [Module]
MaxP int()
MaxT int()
Names [Name]
Apps [App]
Env [{Par,Val}]
Start {Module,StartArgs}
Phases [{Phase,PhaseArgs}]
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()

Val = StartArgs = PhaseArgs
ApplicationVersion = string(

Application name.

term()

For the application controller, all keys are optional. The respective default values are used for any omitted keys.

Thefunctionsin syst ool s require more information. If they are used, the following keys are mandatory:

description

Ericsson AB. All Rights Reserved.: Kernel | 47

app

* vsn

* nodul es

e registered

e applications

The other keys areignored by syst ool s.
description

A one-line description of the application.
id

Product identification, or similar.
vsn

Version of the application.
nodul es

All modules introduced by this application. syst ool s usesthislist when generating start scripts and tar files.
A module can only be defined in one application.

max P

Deprecated - isignored

Maximum number of processes alowed in the application.
maxT

Maximum time, in milliseconds, that the application is allowed to run. After the specified time, the application
terminates automatically.

regi stered

All names of registered processes started in this application. syst ool s uses this list to detect name clashes
between different applications.

i ncl uded_applications

All applicationsincluded by this application. When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed that the top-most supervisor of the
included application is started by a supervisor of this application.

applications

All applications that must be started before this application. If an application is also listed in
opti onal _appl i cati ons, thenthe application is not required to exist (but if it exists, it is also guaranteed
to be started before this one).

syst ool s usesthislist to generate correct start scripts. Defaultsto the empty list, but noticethat all applications
have dependenciesto (at least) Kernel and STDLIB.

optional _applications

A list of appl i cati ons that are optiona. Note if you want an optional dependency to be automatically
started before the current application whenever it is available, it must be listed on both appl i cat i ons and
optional _applications.

env

Configuration parameters used by the application. The value of a configuration parameter isretrieved by calling
appl i cation: get_env/1, 2. Thevauesin the application resource file can be overridden by valuesin a
configuration file (seeconf i g(4)) or by command-lineflags (seeerts: erl (1)).

48 | Ericsson AB. All Rights Reserved.: Kernel

app

nod
Specifies the application callback module and a start argument, seeappl i cati on(3).

Key nod is necessary for an application implemented as a supervision tree, otherwise the application controller
does not know how to start it. mod can be omitted for applications without processes, typically code libraries,
for example, STDLIB.

start _phases

A list of sart phases and corresponding start arguments for the application. If this key
is present, the application master, in addition to the usua cal to Mdul e:start/2, aso
calls Modul e: start _phase(Phase, Type, PhaseArgs) for each stat phase defined by key
start _phases. Only after thisextended start procedure, appl i cati on: start (Appl i cati on) returns.

Start phases can be used to synchronize startup of an application and itsincluded applications. In this case, key
nmod must be specified as follows:
{mod, {application_starter, [Module,StartArgsl}}

The application master then calls Modul e: start/ 2 for the primary application, followed by calls to
Modul e: st art _phase/ 3 for each start phase (as defined for the primary application), both for the primary
application and for each of itsincluded applications, for which the start phase is defined.

Thisimpliesthat for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. For more information, see OTP Design Principles.

runti me_dependenci es

A list of application versions that the application depends on. An example of such an application version is
"kernel - 3. 0". Application versions specified as runtime dependencies are minimum requirements. That is,
alarger application version than the one specified in the dependency satisfies the requirement. For information
about how to compare application versions, see section Versions in the System Principles User's Guide.

Notice that the application version specifies a source code version. One more, indirect, requirement is that the
installed binary application of the specified version is built so that it is compatible with the rest of the system.

Some dependencies can only be required in specific runtime scenarios. When such optional dependencies exist,
these are specified and documented in the corresponding "App" documentation of the specific application.

Therunti me_dependenci es key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. Thisis actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

See Also
application(3),systool s(3)

Ericsson AB. All Rights Reserved.: Kernel | 49

application

application

Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
asaunit, and that can be reused in other systems. This module interacts with application controller, aprocess started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functionsto accessinformation about applications (for example, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Appl i cati on. app, where Appl i cat i on is the application name. For details about the
application specification, see app(4) .

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
asasupervision tree. The definition of how to start and stop thetreeisto belocated in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

ensure all started(Applications) ->
{ok, Started} | {error, Reason}

ensure all started(Applications, Type) ->
{ok, Started} | {error, AppReason}

ensure _all started(Applications, Type, Mode) ->
{ok, Started} | {error, AppReason}

Types:
Applications = atom() | [atom()]
Type = restart type()
Mode = serial | concurrent
Started = [atom()]
AppReason = {atom(), term()}
Appl i cati ons iseitherananat on() oralist of at on() representing multiple applications.

This function is equivalent to calling st art/ 1, 2 repeatedly on al dependencies that are not yet started of each
application. Optional dependencieswill also be loaded and started if they are available.

The Mbde argument controls if the applications should be started in ser i al mode (one at atime) or concur r ent
mode. In concurrent mode, a dependency graph is built and the leaves of the graph are started concurrently and

50 | Ericsson AB. All Rights Reserved.: Kernel

application

recursively. In both modes, no assertion can be made about the order the applications are started. If not supplied, it
defaultstoseri al .

Returns { ok, AppNanes} for a successful start or for an already started application (which is, however, omitted
from the AppNanes list).

Thefunctionreports{ err or, {AppNane, Reason}} for errors, where Reason isany possible reason returned
by start/ 1, 2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
toitsinitial state.

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart type()

Reason = term()

Equivalenttost art/ 1, 2 except it returns ok for already started applications.

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> []1 | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their valuesfor Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returns undef i ned. If the process executing the call does not
belong to any application, the function returns|[] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _application(self()).

Ericsson AB. All Rights Reserved.: Kernel | 51

application

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}
get env(Application, Par) -> undefined | {ok, Val}

Types.
Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Appl i cati on. If the application argument is omitted, it
defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

» The specified application is not loaded.
* The configuration parameter does not exist.
» The process executing the call does not belong to any application.

get env(Application, Par, Def) -> Val
Types:
Application = P

ar = atom()
Def = Val = term(

)

Workslikeget _env/ 2 but returns value Def when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument isomitted,
it defaultsto the application of the calling process.

Returnsundef i ned if any of the following applies:

* The specified application is not loaded.
e The specification key does not exist.
» The process executing the call does not belong to any application.

get supervisor(Application) -> undefined | {ok, Pid}
Types:

Pid = pid()

Application = atom()
Returnsthe Pi d of the supervisor running at the root of Appl i cati on.

If the specified application does not exist or does not define a callback module, the function returns undef i ned.
load (AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}
Types.

52 | Ericsson AB. All Rights Reserved.: Kernel

application

AppDescr = Application | (AppSpec :: application spec())
Application = atom()

Distributed =
{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple of(node())]
Time = integer() >=1
Reason = term()
application spec() =
{application,
Application :: atom(),
AppSpecKeys :: [application opt()]}
application opt() =
{description, Description :: string()} |
{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]1} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]} |
{env, [{Par :: atom(), Val :: term()}1} |
{start_phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by itsname Appl i cat i on. Inthiscase, the application controller searchesthe code
path for the application resource file Appl i cat i on. app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
describedinapp(4) .

IfDi stributed == {Application,[Tine,] Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the application name (same as in the first argument). If a node crashes and Ti e is specified, the application
controller waits for Ti me milliseconds before attempting to restart the application on another node. If Ti e is not
specified, it defaultsto O and the application is restarted immediately.

Nodes isalist of node names where the application can run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority.

Example:
Nodes = [cpl@cave, {cp2@cave, cp3@cave}]

This means that the application is preferably to be started at cpl@ave. If cpl@ave is down, the application is
to be started at cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefor theapplicationintheKernel configuration parameter di st ri but ed
isused.

Ericsson AB. All Rights Reserved.: Kernel | 53

application

loaded applications() -> [{Application, Description, Vsn}]

Types:
Application = atom()
Description = Vsn = string()

Returnsalist with information about the applications, and included applications, which areloaded using | oad/ 1, 2.
Appl i cati on isthe application name. Descri pt i on and Vsn are the values of their descri pti on andvsn
application specification keys, respectively.

set env(Config) -> ok
set env(Config, Opts) -> ok
Types:
Config = [{Application, Env}]
Application = atom()
Env = [{Par :: atom(), Val :: term()}]
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the configuration Conf i g for multiple applications. It is equivalent to calling set _env/ 4 on each application
individually, except it is more efficient. The given Conf i g isvalidated before the configuration is set.

set _env/ 2 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout canbe specifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 2 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

If an application is given more than once or if an application has the same key given more than once, the behaviour is
undefined and a warning message will be logged. In future releases, an error will be raised.

set _env/1lisequivaenttoset _env(Config, []).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

permit (Application, Permission) -> ok | {error, Reason}
Types:

Application = atom()

Permission = boolean()

Reason = term()

Changes the permission for Appl i cati on to run at the current node. The application must be loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art returns ok but the application is
not started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application is stopped. If the permission later is set
totrue, itisrestarted.

54 | Ericsson AB. All Rights Reserved.: Kernel

application

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (seel oad/ 2).

The function does not return until the application is started, stopped, or successfully moved to another node. However,
in some caseswhere permissionissettot r ue, the function returns ok even though the application isnot started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Appl i cat i on is started aswell.

By default, all applications are loaded with permissiont r ue on all nodes. The permission can be configured using
the Kernel configuration parameter per i ssi ons.

set env(Application, Par, Val) -> ok
set _env(Application, Par, Val, Opts) -> ok

Types:
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Setsthe value of configuration parameter Par for Appl i cati on.

set _env/ 4 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i neout canbe specifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in file
Appl i cati on. app override the ones previously set. Thisis also true for application reloads.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart type()
Reason = term()
Starts Appl i cati on. If it is not loaded, the application controller first loads it using | oad/ 1. It ensures that

any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Appl i cation.

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications needed to be started before this application are running. If an application is missing and the application
is not marked as optional, { error, {not _start ed, App}} isreturned, where App is the name of the missing
application. Note this function makes no attempt to start any of the applications listed in appl i cati ons, not
even optional ones. See ensure_al |l _started/ 1, 2 for recursively starting the current application and its
dependencies.

Ericsson AB. All Rights Reserved.: Kernel | 55

application

Once validated, the application controller then creates an application master for the application. The application
master becomes the group leader of all the processesin the application. 1/O isforwarded to the previous group leader,
though, thisisjust away to identify processes that belong to the application. Used for example to find itself from any
process, or, reciprocally, to kill them all when it terminates.

The application master starts the application by calling the application callback function Modul e: start/ 2 as
defined by the application specification key nod.
Argument Ty pe specifies the type of the application. If omitted, it defaultstot enpor ary.

e |f apermanent application terminates, all other applications and the entire Erlang node are also terminated.
» If atransient application terminates:

« withReason == nor nal , thisisreported but no other applications are terminated.

» abnormally, all other applications and the entire Erlang node are also terminated.
» If atemporary application terminates, this is reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by caling st op/ 1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shut down, not nor mal .

start type() -> StartType | undefined | local
Types:
StartType = start type()

This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, whichis St art Type or | ocal .

For adescription of St art Type, seeModul e: start/ 2.

| ocal isreturned if only parts of the application are restarted (by a supervisor), or if the function is called outside
astartup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthetop supervisor of the application to shut down (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe callback module as defined by the application specification key mod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process belonging to the application, are also terminated.

When stopped, the application is still loaded.

To stop adistributed application, st op/ 1 must be called on all nodeswhere it can execute (that is, on all nodeswhere
it has been started). The call to st op/ 1 on the node where the application currently executes stops its execution. The
application is not moved between nodes, as st op/ 1 is called on the node where the application currently executes
beforest op/ 1 is called on the other nodes.

56 | Ericsson AB. All Rights Reserved.: Kernel

application

takeover(Application, Type) -> ok | {error, Reason}
Types.

Application = atom()

Type = restart type()

Reason = term()
Takes over the distributed application Appl i cati on, which executes at another node Node. At the current
node, the application isrestarted by calling Modul e: st art ({t akeover, Node}, Start Args) . Modul e and
St art Ar gs areretrieved from the loaded application specification. The application at the other node is not stopped

until the startup is completed, that is, when Modul e: st art/ 2 and any callsto Modul e: st art _phase/ 3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If thisis not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For adescription of Type, seestart/ 1, 2.

unload(Application) -> ok | {error, Reason}
Types:

Application = atom()

Reason = term()

Unloads the application specification for Appl i cati on from the application controller. It also unloads the
application specificationsfor any included applications. Notice that the function does not purge the Erlang object code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types:
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset env/ 2 usesthe standard gen_ser ver time-out value (5000 ms). Option t i meout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso allows the persistent option to be passed (seeset _env/ 4).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

which applications() -> [{Application, Description, Vsn}]
which applications(Timeout) -> [{Application, Description, Vsn}]
Types:

Ericsson AB. All Rights Reserved.: Kernel | 57

application

Timeout = timeout()
Application = atom()
Description = Vsn = string()
Returns a list with information about the applications that are currently running. Appl i cat i on isthe application

name. Descri pti on and Vsn are the values of their descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver time-out value (5000 ms). A Ti neout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

The following functions are to be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types.
Start Type = start_type()
StartArgs = tern()
Pid = pid()

State = term)

This function is called whenever an application is started using start/ 1, 2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

St ar t Type defines the type of start:

* nornal ifitisanormal startup.

* nornal asoif theapplication is distributed and started at the current node because of afailover from another
node, and the application specification key st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node because of a takeover from
Node, either becauset akeover/ 2 has been called or because the current node has higher priority than Node.

o {failover, Node} if theapplication is distributed and started at the current node because of afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function is to return { ok, Pi d} or {ok, Pi d, St at e}, where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If the application is stopped later, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types.

Phase = aton()

Start Type = start_type()

PhaseArgs = term))

Pid = pid()

State = state()

58 | Ericsson AB. All Rights Reserved.: Kernel

application

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specificationkey st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For adescription of St art Type, see Modul e: start/ 2.

Module:prep stop(State) -> NewState
Types:
State = NewState = term))
Thisfunctioniscalled when an application isabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
ispassed to Mbdul e: st op/ 1.

Thefunctionisoptional. If it isnot defined, the processes are terminated and then Modul e: st op(St at e) iscalled.

Module:stop(State)
Types:
State = term))

This function is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and isto do any necessary cleaning up. Thereturn valueisignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: st art/ 2.

Module:config change(Changed, New, Removed) -> ok
Types:

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term()

Thisfunction is called by an application after a code replacement, if the configuration parameters have changed.
Changed isalist of parameter-value tuplesincluding all configuration parameters with changed values.
Newisalist of parameter-value tuplesincluding all added configuration parameters.

Renoved isalist of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 59

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

cookie() -> Cookie
Types.
Cookie = cookie()
Useerl ang: get _cooki e() in ERTSinstead.

cookie(TheCookie) -> true

Types:
TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.
Cookie = cookie()

Useer| ang: set _cooki e(node(), Cookie) in ERTSinstead.

is_auth(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node is authorized. Notice that a connection to Node is established in this case.
Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinksit has).

Usenet _adm pi ng(Node) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent tonode_cooki e(Node, Cooki e) .

node cookie(Node, Cookie) -> yes | no
Types:

Node = node()

Cookie = cookie()

Sets the magic cookie of Node to Cooki e and verifies the status of the authorization. Equivalent to calling
erl ang: set _cooki e(Node, Cooki e),followed by aut h: i s_aut h(Node) .

60 | Ericsson AB. All Rights Reserved.: Kernel

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in interactive or embedded mode. Which one is decided by the command-line
flag - node:

% erl -mode interactive

The modes are as follows:

* In interactive mode, which is default, only some code is loaded during system startup, basically the modules
needed by the runtime system. Other code is dynamically loaded when first referenced. When a call to afunction
in acertain moduleismade, and the moduleis not loaded, the code server searchesfor and triesto load the module.

* |n embedded mode, modules are not auto loaded. Trying to use a module that has not been loaded resultsin an
error. This mode is recommended when the boot script loads all modules, asitistypicaly donein OTP releases.
(Code can still be loaded later by explicitly ordering the code server to do o).

To prevent accidentally rel oading of modules affecting the Erlang runtime system, directoriesker nel , st dl i b, and
conpi | er areconsidered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload amodule residing in any of them. The feature can be disabled by using command-line flag - nost i ck.

Code Path

In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directories can benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those having the same Nane. Suffix - Vsn is optional. If an ebi n directory exists under Nane| -
Vsn] , thisdirectory is added to the code path.

Environment variable ERL_ LI BS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebi n directory are ignored.

All application directories found in the additional directories appear before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_ LI BS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:
On aUnix-like system, ERL_ LI BS can be set to the following

/usr/local/jungerl:/home/some user/my erlang lib

On Windows, use semi-colon as separator.

Ericsson AB. All Rights Reserved.: Kernel | 61

code

The code paths specified by $OTPROOT, ERL_LI BS, and boot scripts have their listings cached by default
(except for ".") since OTP 26.0. The code server will lookup the contents in their directories once and avoid
future file system traversals. Therefore modules added to such directories after the Erlang VM boots won't
be picked up. You can disable this behaviour by setting - cache_boot paths fal se or by caling

code: set _pat h(code: get _path()).

The functions in this module and the command line options - pa and - pz are not cached by default. However, many
of the functions that manipulate the code path accept the cache atom as an optional argument, which will enable
caching on selected paths.

Loading of Code From Archive Files

The support for loading code from archive files is experimental. The purpose of releasing it before it isready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
functionl i b_dir/ 2 andflag- code_pat h_choi ce areaso experimental.

TheErlang archivesare ZI P fileswith extension . ez. Erlang archives can also beenclosedinescri pt fileswhose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of rmesi a- 4. 4. 7,
the archive file must be named rmesi a- 4. 4. 7. ez and it must contain atop directory named mmesi a- 4. 4. 7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, amrmesi a. ez archive must
contain anmesi a top directory.

An archivefile for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"]}]).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beamand app files uncompressed in the archive.

Normally the top directory of an application islocated in library directory $OTPROOT/ | i b or in adirectory referred
to by environment variable ERL_ LI BS. At startup, when theinitial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebi n directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/ | i b/ mesi a. ez/ mesi a/ ebi n or $OTPROOT/
i b/ mesia-4.4.7. ez/ mesia-4.4.7/ebin.

The code server uses module er| _prim | oader in ERTS (possibly through er| _boot _server) to read
code files from archives. However, the functionsin er| _pri m_ | oader can aso be used by other applications
to read files from archives. For example, the call erl _prim|loader:list_dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeer| _prim_| oader (3).

An application archivefile and aregular application directory can coexist. This can be useful when it is needed to have
parts of the application asregular files. A typical caseisthepr i v directory, which must reside as aregular directory
tolink in driversdynamically and start port programs. For other applicationsthat do not need this, directory pri v can
reside in the archive and the files under the directory pr i v can beread througher| _pri m | oader.

62 | Ericsson AB. All Rights Reserved.: Kernel

code

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebi n, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code: lib_dir/2
returns the path to the subdirectory. For example, code: | i b_di r (megaco, ebi n) can return / ot p/ r oot /
i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi n whilecode: | i b_di r (negaco, pri v) can return
/otp/root/lib/megaco-3.9.1.1/priv.

Whenanescri pt filecontainsan archive, there are no restrictions on the name of theescr i pt and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebi n directoriesin
the embedded archive are added to the code path. Seeert s: escri pt (1) .

When the choice of directories in the code path is stri ct, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/ | i b/ rmesi a-4. 4. 7/ ebinis
explicitly added to the code path, the code server does not load files from $OTPROOT/ | i b/ mesi a-4. 4. 7. ez/
mesi a- 4. 4. 7/ ebi n.

This behavior can be controlled through command-line flag - code_pat h_choi ce Choi ce. If theflagisset to
r el axed, the code server instead chooses a suitable directory depending on the actua file structure. If a regular
application ebi n directory exists, it is chosen. Otherwise, the directory ebi n in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-lineflag- code_pat h_choi ce Choi ce alsoaffectshow modulei ni t interpretstheboot scri pt.
The interpretation of the explicit code pathsin the boot scri pt canbestrict orrel axed. Itisparticularly
useful to set the flag to r el axed when elaborating with code loading from archives without editing the boot
scri pt. Thedefaultisr el axed. Seeerts:init(3).

Current and Old Code

The code for amodule can exist in two variantsin asystem: current code and old code. When amoduleisloaded into
the system for the first time, the module code becomes ‘current' and the global export tableis updated with references
to al functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes'old’, and all export entriesreferring to the previousinstance are removed. After that, the new instance
isloaded as for the first time, and becomes 'current’.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
code, but old code can still be evaluated because of processeslingeringinit.

If athird instance of the module is|oaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code L oading in the Erlang Reference Manual .
Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Ericsson AB. All Rights Reserved.: Kernel | 63

code

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or atuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specifiedto set _pat h/ 1).

Error Reasons for Code-Loading Functions

Functions that load code (such as| oad_fi | e/ 1) will return{ err or, Reason} if theload operation fails. Here
follows a description of the common reasons.

badfil e
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code was found.
not _purged
The object code could not be loaded because an old version of the code already existed.
on_load failure
The module has an -on_load function that failed when it was called.
sticky directory
The object code resides in a sticky directory.

Data Types

add path ret() = true | {error, bad directory}
cache() = cache | nocache

load ret() =
{error, What :: load error rsn()} |
{module, Module :: module()}

load error rsn() =
badfile | nofile | not purged | on load failure |
sticky directory

module status() = not loaded | loaded | modified | removed
prepared code()
An opague term holding prepared code.

replace path ret() =
true | {error, bad directory | bad name | {badarg, term()}}

set path ret() = true | {error, bad directory}

Exports

set path(Path) -> set path ret()
set path(Path, Cache :: cache()) -> set path ret()
Types:
Path = [Dir :: file:filename()]
Sets the code path to the list of directories Pat h.

An optional second argument may be set to the atom cache to control if the contents of the directory must be cached
on first traversal. Defaultsto nocache.

64 | Ericsson AB. All Rights Reserved.: Kernel

code

Returns:
true
If successful
{error, bad_directory}
If any Di r isnot adirectory name

get path() -> Path

Types:
Path = [Dir :: file:filename()]
Returns the code path.

add path(Dir) -> add path ret()
add path(Dir, Cache :: cache())
add pathz(Dir) -> add path _ret()
add pathz(Dir, Cache :: cache()) -> add path ret()
Types:

Dir = file:filename()

add path ret() = true | {error, bad directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r aready existsin the
path, it is not added.

An optional second argument may be set to the atom cache to control if the contents of the directory must be cached
on first traversal. Defaultsto nocache.

-> add path _ret()

Returnst r ue if successful, or { error, bad_di rectory} if Di r isnot the name of adirectory.

add patha(Dir) -> add path ret()
add patha(Dir, Cache :: cache()) -> add path ret()
Types.
Dir = file:filename()
add path ret() = true | {error, bad directory}
AddsDi r to the beginning of the code path. If Di r exists, it is removed from the old position in the code path.

An optional second argument may be set to the atom cache to control if the contents of the directory must be cached
on first traversal. Defaultsto nocache.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add paths(Dirs) -> ok
add paths(Dirs, Cache :: cache()) -> ok
add pathsz(Dirs) -> ok
add pathsz(Dirs, Cache :: cache()) -> ok
Types:
Dirs = [Dir :: file:filename()]
Addsthe directoriesin Di r s to the end of the code path. If aDi r exists, it is not added.

Ericsson AB. All Rights Reserved.: Kernel | 65

code

An optional second argument may be set to the atom cache to control if the contents of the directory must be cached
on first traversal. Defaultsto nocache.

Always returns ok, regardless of the validity of each individua Di r .

add pathsa(Dirs) -> ok
add pathsa(Dirs, Cache :: cache()) -> ok
Types:

Dirs = [Dir :: file:filename()]

TraversesDi r s and adds each Di r to the beginning of the code path. This means that the order of Di r s isreversed
in the resulting code path. For example, if you add [Di r 1, Di r 2] , the resulting path will be [Di r2, Di r 1|
A dCodePat h] .

If aDi r aready existsin the code path, it is removed from the old position.

An optional second argument may be set to the atom cache to control if the contents of the directory must be cached
on first traversal. Defaultsto nocache.

Always returns ok, regardless of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:

NameOrDir = Name | Dir

Name = atom()

Dir = file:filename()

What = bad name

Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the
name. ../ Name[- Vsn] [/ ebi n] isdeleted from the code path. Also, the complete directory name Di r can be
specified as argument.

Returns:
true
If successful
fal se
If the directory is not found
{error, bad_nane}
If the argument isinvalid

del paths(NamesOrDirs) -> ok
Types:
NamesOrDirs = [Name | Dir]
Name = atom()
Dir = file:filename()
Deletes directories from the code path. The argument isalist of either atoms or complete directory names. If an atom
Nare, the directory withthename. . . / Name[- Vsn] [/ ebi n] is deleted from the code path.

Alwaysreturns ok, regardless of the validity of each individual NamesOr Di r s.

66 | Ericsson AB. All Rights Reserved.: Kernel

code

clear cache() -> ok

Clear the code path cache. If adirectory is cached, its cacheis cleared once and then it will be recal culated and cached
once morein afuture traversal.

If you want to clear the cache for a single path, you might re-add it to the code path (with add_pat h/ 2)
or replace it (with repl ace_pat h/ 3). If you want to disable all cache, you can reset the code path with
code: set _pat h(code: get _path()).

Alwaysreturns ok.

replace path(Name, Dir) -> replace path ret()
replace path(Name, Dir, Cache :: cache()) -> replace path ret()
Types:

Name = atom()

Dir = file:filename()

Replaces an old occurrence of adirectory named. . . / Nane[- Vsn] [/ ebi n] inthecode path, withDi r . If Nane
doesnot exist, it addsthenew directory Di r lastinthe code path. Thenew directory must alsobenamed. . . / Nang][-
Vsn] [/ ebi n] . Thisfunctionisto be used if a new version of the directory (library) is added to arunning system.

An optional third argument may be set to the atom cache to control if the contents of the directory must be cached
on first traversal. Defaultsto nocache.

Returns:
true
If successful
{error, bad_nane}
If Nanme is not found
{error, bad_directory}
If Di r doesnot exist
{error, {badarg, [Nanme, Dir]}}
If Narre or Di r isinvalid

load file(Module) -> load ret()

Types:
Module = module()
load ret() =

{error, What :: load error rsn()} |
{module, Module :: module()}

Tries to load the Erlang module Modul e, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Modul e. beam Theloading failsif the module name found
in the object code differsfrom the name Modul e. | oad_bi nar y/ 3 must be used to load object code with amodule
name that is different from the file name.

Returns{ nodul e, Mbdul e} if successful, or { error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

load abs(Filename) -> load ret()
Types:

Ericsson AB. All Rights Reserved.: Kernel | 67

code

Filename = file:filename()

load ret() =
{error, What :: load error _rsn()} |
{module, Module :: module()}

loaded filename() =
(Filename :: file:filename()) | loaded ret atoms()

loaded ret atoms() = cover compiled | preloaded
Sameas!| oad_fil e(Modul e), but Fi | enane isan absolute or relative filename. The code path is not searched.

It returns avalue in the same way as| oad_fil e/ 1. Notice that Fi | enanme must not contain the extension (for
example, . beam) because| oad_abs/ 1 addsthe correct extension.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:
Module = module()
What = embedded | badfile | nofile | on load failure
Triestoload amoduleinthesameway asl oad_f i | e/ 1, unlessthemoduleisalready |loaded. However, in embedded

mode it does not load a module that is not already loaded, but returns { error, enbedded} instead. See Error
Reasons for Code-L oading Functions for a description of other possible error reasons.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types:

Module = module()

Filename = loaded filename()

Binary = binary()

What = badarg | load error rsn()

loaded filename() =

(Filename :: file:filename()) | loaded ret atoms()

loaded ret atoms() = cover compiled | preloaded

Thisfunction can be used to |oad object code on remote Erlang nodes. Argument Bi nar y must contain object codefor

Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for Modul e
comes. Thus, Fi | enane isnot opened and read by the code server.

Returns{ nodul e, Mbdul e} if successful, or {error, Reason} ifloadingfails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

atomic load(Modules) -> ok | {error, [{Module, What}]}
Types:
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filename()
Binary = binary()
What =
badfile | nofile | on load not allowed | duplicated |

68 | Ericsson AB. All Rights Reserved.: Kernel

code

not purged | sticky directory | pending on load

Triesto load all of the modulesin the list Modul es atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_| oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.
not purged
The object code cannot be loaded because an old version of the code already exists.
sticky_directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module containsan - on_| oad function that never finished.

If it isimportant to minimize the time that an application is inactive while changing code, use prepare |oading/1 and
finish_loading/1 instead of at oni ¢_| oad/ 1. Hereis an example:

{ok,Prepared} = code:prepare_ loading(Modules),

Put the application into an inactive state or do any
other preparation needed before changing the code.

= code:finish loading(Prepared),

%% Resume the application.

@ of

)
"6
)

"6

o
x~

prepare loading(Modules) ->
{ok, Prepared} | {error, [{Module, What}]}

Types.
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filename()
Binary = binary()
Prepared = prepared code()
What = badfile | nofile | on load not allowed | duplicated
Prepares to load the modulesin the list Mbdul es. Finish the loading by calling finish_loading(Prepared).
This function can fail with one of the following error reasons:
badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

Ericsson AB. All Rights Reserved.: Kernel | 69

code

nofile

No file with object code exists.
on_| oad_not _al | owed

A module contains an -on_load function.
dupl i cat ed

A moduleisincluded more than oncein Modul es.

finish loading(Prepared) -> ok | {error, [{Module, What}]}
Types:

Prepared = prepared code()

Module = module()

What = not purged | sticky directory | pending on load

Tries to load code for al modules that have been previously prepared by prepare loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:
not _pur ged
The object code cannot be loaded because an old version of the code already exists.
sticky directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module contains an - on_| oad function that never finished.

ensure modules loaded(Modules :: [Module]) ->
ok | {error, [{Module, What}]}

Types:
Module = module()
What = badfile | nofile | on load failure
Triesto load any modules not already loaded in the list Modul es inthe sameway asload file/1.

Returnsok if successful, or { er r or, [{ Modul e, Reason}]} if loading of some modulesfails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

delete(Module) -> boolean()
Types.
Module = module()

Removes the current code for Mbdul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be madeto it.

Returnst r ue if successful, or f al se if thereis old code for Modul e that must be purged first, or if Modul e is
not a (loaded) module.

purge (Module) -> boolean()
Types.

70 | Ericsson AB. All Rights Reserved.: Kernel

code

Module = module()

Purgesthe code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Asof ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For moreinformation see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

Returnst r ue if successful and any process is needed to be killed, otherwisef al se.

soft purge(Module) -> boolean()
Types:
Module = module()
Purges the code for Mbdul e, that is, removes code marked as old, but only if no processes linger init.

As of ERTS version 9.0, aprocess is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_process_code/ 3, whichisused in order
to determine this.

Returnsf al se if the module cannot be purged because of processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false
Types:

Module = module()

Loaded = loaded filename()

loaded filename() =
(Filename :: file:filename()) | loaded ret atoms()

Fi | enane is an absolute filename.
loaded ret _atoms() = cover_compiled | preloaded

Checksif Modul e isloaded. If itis, {fi | e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute filename Fi | enane from which the code is obtained. If the module is
preloaded (see scri pt (4)), Loaded==pr el oaded. If the module is Cover-compiled (see cover (3)),
Loaded==cover _conpi | ed.

all available() -> [{Module, Filename, Loaded}]
Types.

Module = string()

Filename = loaded filename()

Loaded = boolean()

loaded filename() =
(Filename :: file:filename()) | loaded ret atoms()

Fi | enane is an absolute filename.

Ericsson AB. All Rights Reserved.: Kernel | 71

code

loaded ret atoms() = cover_compiled | preloaded

Returnsalist of tuples{ Modul e, Fil ename, Loaded} for all available modules. A moduleis considered to be
availableif it either isloaded or would beloaded if called. Fi | ename isnhormally the absolute filename, as described
fori s_| oaded/ 1.

all loaded() -> [{Module, Loaded}]
Types:

Module = module()

Loaded = loaded filename()

loaded filename() =
(Filename :: file:filename()) | loaded ret atoms()

Fi | enane is an absolute filename.
loaded ret atoms() = cover_compiled | preloaded

Returns alist of tuples{ Modul e, Loaded} for al loaded modules. Loaded is normally the absolute filename,
asdescribed fori s_| oaded/ 1.

which(Module) -> Which
Types.
Module = module()
Which = loaded filename() | non_existing

loaded filename() =
(Filename :: file:filename()) | loaded ret atoms()

loaded ret atoms() = cover compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Modul e
and returns the absol ute filename.

If the moduleisloaded, it returns the name of the file containing the loaded object code.
If themoduleis preloaded, pr el oaded isreturned.

If the moduleis Cover-compiled, cover _conpi | ed isreturned.

If the module cannot be found, non_exi st i ng isreturned.

get object code(Module) -> {Module, Binary, Filename} | error

Types.
Module = module()
Binary = binary()

Filename = file:filename()

Searches the code path for the object code of module Mbdul e. Returns { Modul e, Binary, Fil enane} if
successful, otherwise er r or . Bi nary isabinary data object, which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in adistributed system. For example, loading module Modul e
on anode Node is done as follows:

%;Module, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binaryl),

72 | Ericsson AB. All Rights Reserved.: Kernel

code

get doc(Mod) -> {ok, Res} | {error, Reason}

Types.
Mod = module()
Res = #docs v1{}

Reason = non_existing | missing | file:posix()

Searches the code path for EEP-48 style documentation and returnsit if available. If no documentation can be found
the function tries to generate documentation from the debug information in the module. If no debug information is
available, thisfunction will return{ err or, m ssi ng}.

For moreinformation about the documentati on chunk see Documentation Storage and Format in Kernel'sUser's Guide.

root dir() -> file:filename()
Returns the root directory of Erlang/OTP, which isthe directory whereit isinstalled.
Example:

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returnsthe library directory, $OTPROOT/ | i b, where $OTPRQOOT isthe root directory of Erlang/OTP.
Example:

> code:lib dir().
"/usr/local/otp/lib"

lib dir(Name) -> file:filename() | {error, bad name}
Types.
Name = atom()

Returnsthe path for the "library directory", the top directory, for an application Nane located under $OTPROOT/ | i b
or on adirectory referred to with environment variable ERL_ LI BS.

If aregular directory called Nanme or Nanme- Vsn exists in the code path with an ebi n subdirectory, the path to this
directory isreturned (not the ebi n directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/ 1 ocal /ot p/lib/ mesia-4.2.2. ez/ mesia-4.2.2/ebin isin the
path, / usr/ 1 ocal / ot p/ | i b/ mesi a- 4. 2. 2/ ebi n isreturned. This means that the library directory for an
application isthe same, regardlessiif the application residesin an archive or not.

Example:

> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{ error, bad_nane} if Nane isnot the name of an application under $OTPROOT/ | i b or on adirectory
referred to through environment variable ERL__ LI BS. Fails with an exception if Nane has the wrong type.

Ericsson AB. All Rights Reserved.: Kernel | 73

code

For backward compatibility, Narme is also allowed to be a string. That will probably change in afuture release.

lib dir(Name, SubDir) -> file:filename() | {error, bad name}
Types:
Name = SubDir = atom()

Returnsthe path to a subdirectory directly under the top directory of an application. Normally the subdirectoriesreside
under the top directory for the application, but when applications at least partly reside in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while others reside in an archive file. It is not
checked whether this directory exists.

Example:

> code:lib dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nane or SubDi r has the wrong type.

compiler dir() -> file:filename()
Returns the compiler library directory. Equivalenttocode: | i b_di r(conpiler).

priv_dir(Name) -> file:filename() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalentto code: | i b_di r (Name, priv).

For backward compatibility, Nare is also allowed to be a string. That will probably change in afuture release. |

objfile extension() -> nonempty string()
Returns the object code file extension corresponding to the Erlang machine used, namely . beam

stick dir(Dir) -> ok | error
Types:

Dir = file:filename()
MarksDi r as ticky.
Returns ok if successful, otherwiseer r or .

unstick dir(Dir) -> ok | error
Types:

Dir = file:filename()
Unsticks adirectory that is marked as sticky.

74 | Ericsson AB. All Rights Reserved.: Kernel

code

Returns ok if successful, otherwiseer r or .

is sticky(Module) -> boolean()
Types:
Module = module()

Returnst r ue if Modul e is the name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or f al se if Modul e isnot aloaded module or is not sticky.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:filename()

Searches the code path for Fi | enane, afile of arbitrary type. If found, the full name is returned. non_exi st i ng
isreturned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches al directoriesin the code path for module names with identical names and writes areport to st dout .

module status() -> [{module(), module status()}]
Types:

module status() = not loaded | loaded | modified | removed
Seenodul e_status/landal |l | oaded/ O for details.

module status(Module :: module() | [module()]) ->
module status() | [{module(), module status()}]

Types:
ypmodule_status() = not loaded | loaded | modified | removed
The status of a module can be one of:
not | oaded
If Modul e isnot currently loaded.
| oaded
If Mbdul e isloaded and the abject file exists and contains the same code.
r emoved
If Modul e isloaded but no corresponding object file can be found in the code path.
nodi fi ed
If Mbdul e isloaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as| oaded, without inspecting the contents on disk. Cover compiled modules
will always be reported asnodi f i ed if an object file exists, or asr enoved otherwise. Modules whose load path is
an empty string (which isthe convention for auto-generated code) will only bereported as| oaded or not _| oaded.

Seedsonodi fi ed_nodul es/ 0.

Ericsson AB. All Rights Reserved.: Kernel | 75

code

modified modules() -> [module()]

Returns the list of al currently loaded modules for which nodul e_st at us/ 1 returns nodi fi ed. See also
all | oaded/ 0.

get mode() -> embedded | interactive
Returns an atom describing the mode of the code server: i nt er acti ve or enbedded.

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for arunning node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with | oad_bi nary/ 3.

76 | Ericsson AB. All Rights Reserved.: Kernel

config

config

Name

A configuration file contains values for configuration parameters for the applications in the system. The er |
command-lineargument - conf i g Narre tellsthe systemto usedatain the system configurationfileNane. confi g.

The erl command-line argument - conf i gf d works the same way as the - conf i g option but specifies a file
descriptor to read configuration data from instead of afile.

The configuration data from configuration files and file descriptors are read in the same order asthey are given on the
command line. For example,er|l -config a -configfd 3 -config b -configfd 4 would causethe
system to read configuration datain thefollowing order a. conf i g, filedescriptor 3, b. conf i g, and file descriptor
4. 1f aconfiguration parameter is specified more than once in the given files and file descriptors, the last one overrides
the previous ones.

Configuration parameter values in a configuration file or file descriptor override the values in the application
resource files (see app(4)). The vaues in the configuration file are always overridden by command-line flags (see
erts:erl(1)).

The value of a configuration parameter isretrieved by callingappl i cati on: get _env/ 1, 2.

File Syntax

The configuration fileisto be called Nane. conf i g, where Nane isany name.

File. conf i g contains asingle Erlang term and has the following syntax:
[{Applicationl, [{Parll, Valll}, ...1},

{ApplicationN, [{ParN1, ValN1}, ...]}].

Application = aton()
Application name.

Par = atom()
Name of a configuration parameter.
Val = term()

Value of aconfiguration parameter.

sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys. confi g. This file is to be located in $ROOT/ r el eases/ Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn isthe release version.

Release handling relies on this assumption. When installing anew release version, thenew sys. confi g isread and
used to update the application's configurations.

This means that specifying another . confi g file, or more . confi g files, leads to an inconsistent update of
application configurations. There is, however, away to point out other config filesfromasys. confi g. How to do
thisis described in the next section.

Ericsson AB. All Rights Reserved.: Kernel | 77

config

Including Files from sys.config and -configfd Configurations

There is a way to include other configuration files from asys. confi g file and from a configuration that comes
from afile descriptor that has been pointed out with the - conf i gf d command-line argument.

The syntax for including files can be described by the Erlang type language like this:

[{Application, [{Par, Val}1} | IncludeFile].

I ncludeFile = string()
Nameof a. confi g file. Theextension. conf i g can be omitted. It is recommended to use absolute paths.
If arelative pathisusedinasys. confi g, | ncl udeFi | e issearched, first, relativetothesys. confi g
directory, then relative to the current working directory of the emulator. If arelative pathisused in a-
confi gf d configuration, | ncl udeFi | e issearched, first, relative to the dictionary containing the boot
script (see aso the - boot command-line argument) for the emulator, then relative to the current working
directory of the emulator. This makesit possibleto use sys. conf i g for pointing out other . confi g files
in arelease or in anode started manually using - conf i g or - conf i gf d with the same result whatever the
current working directory is.

When traversing the contents of asys. confi g or a- confi gf d configuration and a filename is encountered, its
contents are read and merged with the result so far. When an application configuration tuple{ Appl i cat i on, Env}

is found, it is merged with the result so far. Merging means that new parameters are added and existing parameter
values are overwritten.

Example:
sys.config:
["/home/user/myconfigl"
{myapp, [{parl,vall},{par2,val2}1},
"/home/user/myconfig2"].
myconfigl.config:
[{myapp, [{par0,valO}, {parl,vall},{par2,val0}]}].
myconfig2.config:
[{myapp, [{par2,val3},{par3,vald}]}].
Thisyields the following environment for myapp:

[{par0,vale}, {parl,vall}, {par2,val3},{par3,vald}]

The run-time system will abort before staring up if an include file specified in sys. confi g or a-configfd
configuration does not exist, or is erroneous. However, installing anew release version will not fail if thereisan error
while loading an include file, but an error message is returned and the erroneous file is ignored.

See Also
app(4),erts:erl (1), OTPDesign Principles

78 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

disk_log

Erlang module

di sk_| og isadisk-based term logger that enables efficient logging of items on files.

Three types of logs are supported:

halt logs
Appends itemsto asinglefile, which size can be limited by thedi sk_| og module.

wrap logs
Uses a sequence of wrap log files of limited size. Asawrap log file is filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file isfilled up.

rotate logs

Uses a sequence of rotate log files of limited size. Asalog fileis filled up, it is rotated and then compressed.
There is one active log file and upto the configured number of compressed log files. Only externally formatted
logs are supported. It follows the same naming convention as the handler logger_std_h for Logger. For more
details about the naming convention check the file parameter for open/ 1.

It followsthe same naming convention asthat for the compressed filesfor Linux'slogrotate and BSD's newsyslog.
For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. Thisisthe only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leaves it up to the user to read and interpret the logged data. The di sk_I og module cannot repair externally
formatted logs.

For each open disk log, one process handles requests made to the disk log. This processis created when open/ 1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by calling cl ose/ 1) or by terminating.

Owners can subscribe to notifications, messages of theform{ di sk_| og, Node, Log, | nfo},whicharesent
from the disk log process when certain events occur, see the functions and in particular the open/ 1 optionnot i fy.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For adisk log process to close its file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Items can belogged synchronously by using functionsl og/ 2,bl og/ 2,1 og_t er ns/ 2,andbl og_t er s/ 2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, usesync/ 1 to
ensurethat). By adding an a to each of the mentioned function names, we get functionsthat log itemsasynchr onously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or lessimmediately.

Ericsson AB. All Rights Reserved.: Kernel | 79

disk_log

When using the internal format for logs, use functions| og/ 2,1 og_terns/ 2, al og/ 2, and al og_t er ns/ 2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding bl og() functions for the external format. These functions log one or more chunks of bytes.
For example, to log the string " hel | 0" in ASCII format, you can usedi sk_1 og: bl og(Log, "hello"),or
di sk_1 og: bl og(Log, list_to_binary("hello")).Thetwo dternatives are equally efficient.

Thebl og() functionscan also be used for internally formatted logs, but in this case they must be called with binaries
constructed with callstot er m t o_bi nary/ 1. There is no check to ensure this, it is entirely the responsibility of
the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/ 2, 3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/ 2, 3 iscalled.

An open disk log is only accessible from the node where the disk log process runs. All processes on the node where
the disk log process runs can log items or otherwise change, inspect, or close the log.

Errors are reported differently for asynchronous log attempts and other uses of the di sk_| og module. When used
synchronously, thismodule replies with an error message, but when called asynchronously, this modul e does not know
where to send the error message. Instead, owners subscribing to notificationsreceive an er r or _st at us message.

Thedi sk_| og module does not report errorstotheer r or _| ogger module. It isup to the caller to decide whether
toemploy theerror logger. Functionf or mat _er r or / 1 can be used to produce readable messagesfrom error replies.
However, information events are sent to the error logger in two situations, namely when alog is repaired, or when
afileis missing while reading chunks.

Error message no_such_| og means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

If an attempt to reopen or truncate a log fails (see r eopen/ 2, 3 and t r uncat e/ 1, 2) the disk log process
terminates immediately. Before the process terminates, links to owners and blocking processes (seebl ock/ 1, 2)
are removed. The effect isthat the links work in one direction only. Any process using a disk log must check for
error message no_such_| og if some other process truncates or reopens the log simultaneously.

Data Types

log() = term()
dlog size() =
infinity |
integer() >= 1 |
{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog format() = external | internal
dlog head opt() = none | term() | iodata()
dlog mode() = read only | read write
dlog type() = halt | wrap | rotate
continuation()

Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.

invalid header() = term()
file error() = term()

next file error rsn() =
no such log | nonode |
{read only mode, log()} |
{blocked log, log()} |

80 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

{halt_log, log()} |

{rotate log, log()} |

{invalid header, invalid header()} |

{file error, file:filename(), file error()}

Exports

all() -> [Log]
Types:
Log = log()
Returns the names of the disk logs accessible on the current node.

alog(Log, Term) -> notify ret()
balog(Log, Bytes) -> notify ret()
Types.
Log = log()
Term = term()
Bytes = iodata()
notify ret() = ok | {error, no such log}
Asynchronously append an item to a disk log. al og/ 2 is used for internally formatted logs and bal og/ 2 for

externally formatted logs. bal og/ 2 can also be used for internally formatted logs if the binary is constructed with
acdltotermto_binary/1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_I og, or f or mat _ext er nal if the
item cannot be written on the log, and possibly one of the messages wr ap, ful | , or err or _st at us if an item
is written on the log. Message er r or _st at us is sent if something is wrong with the header function or if afile
€rror occurs.

alog terms(Log, TermList) -> notify ret()
balog terms(Log, BytelList) -> notify ret()
Types:
Log = log()
TermList = [term()]
BytelList = [iodata()]
notify ret() = ok | {error, no such log}
Asynchronously append a list of items to a disk log. al og_terns/ 2 is used for internally formatted logs and

bal og_t er ns/ 2 for externally formatted logs. bal og_t er s/ 2 can aso be used for internally formatted logsiif
the binaries are constructed with callstot erm t o_bi nary/ 1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_| og, or f or mat _ext er nal if the
items cannot be written on the log, and possibly one or more of the messageswr ap, ful | , and error _st at us
if items are written on the log. Message er r or _st at us is sent if something is wrong with the header function or
if afile error occurs.

block(Log) -> ok | {error, block error _rsn()}

block(Log, QueuelLogRecords) -> ok | {error, block error rsn()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 81

disk_log

Log = log()
QueuelLogRecords = boolean()
block error rsn() = no such log | nonode | {blocked log, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can aso
use functions chunk/ 2, 3, bchunk/ 2, 3, chunk_st ep/ 3, and unbl ock/ 1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message { bl ocked | og, Log}, depending on whether the value of
QueuelLogRecords istrue orfal se. QueueLogRecor ds defaultstot r ue, whichisused by bl ock/ 1.

change header(Log, Header) -> ok | {error, Reason}
Types.

Log = log()

Header =

{head, dlog head opt()} |
{head func, MFA :: {atom(), atom(), list()}}

Reason =
no_such log | nonode |
{read only mode, Log} |
{blocked log, Log} |
{badarg, head}

Changes the value of option head or head_f unc for an owner of adisk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
Types.

Log = log()

Owner = pid()

Notify = boolean()

Reason =
no_such log | nonode |
{blocked log, Log} |
{badarg, notify} |
{not owner, Owner}

Changes the value of option not i f y for an owner of adisk log.

change size(Log, Size) -> ok | {error, Reason}

Types:
Log = log()
Size = dlog size()
Reason =

no_such log | nonode |

{read only mode, Log} |

{blocked log, Log} |

{new size too small, Log, CurrentSize :: integer() >= 1} |

82 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

{badarg, size} |
{file error, file:filename(), file error()}

Changesthesize of an openlog. For ahalt log, the size can always beincreased, but it cannot be decreased to something
less than the current file size.

For awrap or rotate log, both the size and the number of files can always be increased, as long as the number of files
does not exceed 65000. For wrap logs, if the maximum number of files is decreased, the change is not valid until
the current file is full and the log wraps to the next file. The redundant files are removed the next time the log wraps
around, that is, starts to log to file number 1.

As an example, assume that the old maximum number of filesis 10 and that the new maximum number of filesis 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
isfull and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current file is 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next timefile 6 isfull.

For rotate logs, if the maximum number of filesis decreased, the redundant files are deleted instantly.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files already full until the next time they are used.

If thelog sizeis decreased, for example, to save space, functionnext _fi | e/ 1, can be used to forcethelog to wrap.

chunk(Log, Continuation) -> chunk ret()
chunk(Log, Continuation, N) -> chunk ret()
bchunk(Log, Continuation) -> bchunk ret()
bchunk(Log, Continuation, N) -> bchunk ret()
Types:

Log = log()

Continuation = start | continuation()

N = integer() >= 1 | infinity

chunk ret() =

{Continuation2 :: continuation(), Terms :: [term()]} |
{Continuation2 :: continuation(),

Terms :: [term()],

Badbytes :: integer() >= 0} |
eof |

{error, Reason :: chunk error rsn()}

bchunk ret() =

{Continuation2 :: continuation(), Binaries :: [binary()1} |
{Continuation2 :: continuation(),

Binaries :: [binary()],

Badbytes :: integer() >= 0} |
eof |

{error, Reason :: chunk error rsn()}

chunk _error _rsn() =
no_such log |
{format_external, log()} |
{blocked log, log()} |
{badarg, continuation} |
{not_internal wrap, log()} |
{corrupt log file, FileName :: file:filename()} |

Ericsson AB. All Rights Reserved.: Kernel | 83

disk_log

{file error, file:filename(), file error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk 1/O by reading 64
kilobyte chunks from the file. Functions bchunk/ 2, 3 return the binaries read from the file, they do not call
bi nary_to_termn().Apart fromthat, they work just likechunk/ 2, 3.

Thefirst timechunk() (or bchunk()) iscalled, aninitial continuation, the atom st ar t , must be provided.

When chunk/ 3 iscalled, N controls the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfi ni ty, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of thefile is reached.

chunk() returns a tuple { Conti nuati on2, Terns}, where Ter s is a list of terms found in the log.
Cont i nuat i on2 isyet another continuation, which must be passed on to any subsequent callsto chunk() . With
aseries of calsto chunk() , all terms from alog can be extracted.

chunk() returnsatuple { Conti nuati on2, Terns, Badbytes} if thelog is opened in read-only mode
and the read chunk is corrupt. Badbyt es is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt log file, FileName} isreturnedif theread chunk iscorrupt.

chunk() returnseof when the end of thelog isreached, or { error, Reason} if anerror occurs. If awrap log
fileis missing, a message is output on the error log.

When chunk/ 2, 3 isused with wrap logs, the returned continuation might not be valid in the next call to chunk() .
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

chunk info(Continuation) -> InfolList | {error, Reason}

Types:
Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]

Reason = {no_continuation, Continuation}

Returns the pair { node, Node}, describing the chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3.

Terms are read from the disk log running on Node.

chunk step(Log, Continuation, Step) ->
{ok, any()} | {error, Reason}
Types.
Log = log()
Continuation = start | continuation()
Step = integer()
Reason =
no such log | end of log |
{format external, Log} |
{blocked log, Log} |
{badarg, continuation} |
{file error, file:filename(), file error()}

Can be used with chunk/ 2, 3 and bchunk/ 2, 3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3, and steps forward (or
backward) St ep filesin the wrap log. The continuation returned, points to the first log item in the new current file.

84 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

If atom st ar t is specified as continuation, the first file of the wrap log is chosen as the new current file.

If the wrap log is not full because all files are not yet used, { error, end_of | og} isreturned if trying to step
outside the log.

close(Log) -> ok | {error, close error rsn()}
Types:

Log = log()

close error _rsn() =

no such log | nonode |
{file error, file:filename(), file error()}

Closesadisk log properly. Aninternally formatted |og must be closed before the Erlang system is stopped. Otherwise,
thelog is regarded as unclosed and the automatic repair procedure is activated next time the log is opened.

The disk log processis not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement the user s counter by closing the log. Attemptsto close alog by aprocessthat isnot an owner areignored
if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

format error(Error) -> io lib:chars()
Types:
Error = term()

Given theerror returned by any function in thismodule, thisfunction returns a descriptive string of the error in English.
For file errors, functionf or mat _error/ 1 inmodulefi | e iscalled.

inc_wrap file(Log) -> ok | {error, inc wrap error rsn()}
Types:

Log = log()

inc_wrap _error_rsn() = next file error_rsn()

invalid header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wr ap message, but if an error occurs with a reason tag of
i nval i d_header orfile_error,anerror_status messageis sent.

info(Log) -> InfoList | {error, no such log}

Types:
Log = log()
InfolList = [dlog info()]

dlog info() =
{name, Log :: log()} |
{file, File :: file:filename()} |
{type, Type :: dlog type()} |
{format, Format :: dlog format()} |
{size, Size :: dlog size()} |
{mode, Mode :: dlog mode()} |

Ericsson AB. All Rights Reserved.: Kernel | 85

disk_log

{owners, [{pid(), Notify :: boolean()}1} |
{users, Users :: integer() >= 0} |
{status,
Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
{node, Node :: node()} |
{head,
Head
none |
{head, binary()} |
(MFA :: {atom(), atom(), list()})} |
{no written items, NoWrittenItems :: integer() >= 0} |
{full, Full :: boolean} |
{no_current bytes, integer() >= 0} |
{no_current items, integer() >= 0}
{no_items, integer() >= 0} |
{current_file, integer() >= 1} |
{no_overflows,
{SinceLogWasOpened :: integer() >= 0,
SincelLastInfo :: integer() >= 0}}

Returnsalist of { Tag, Val ue} pairsdescribing alog running on the node.
The following pairs are returned for all logs:
{nane, Log}

Log isthelog name as specified by the open/ 1 option nane.
{file, File}

For halt logs Fi | e isthefilename, and for wrap logs Fi | e is the base name.
{type, Type}

Type isthelog type as specified by theopen/ 1 optiont ype.
{format, Fornat}

For mat isthelog format as specified by theopen/ 1 option f or nat .
{size, Size}

Si ze isthelog size as specified by theopen/ 1 option si ze, or thesize set by change_si ze/ 2. Thevalue
set by change_si ze/ 2 isreflected immediately.

{node, Mode}
Mbde isthe log mode as specified by the open/ 1 option node.
{owners, [{pid(), Notify}]}

Not i fy isthe value set by the open/ 1 option not i fy or function change_noti fy/ 3 for the owners of
the log.

{users, Users}
User s isthe number of anonymous users of the log, seethe open/ 1 option | i nkt o.
{status, Status}

St at us isok or { bl ocked, QueuelLogRecor ds} asset by functionsbl ock/ 1, 2 and unbl ock/ 1

86 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

{node, Node}

The information returned by the current invocation of function i nf o/ 1 is gathered from the disk log process
running on Node.

Thefollowing pairs are returned for all logs openedinr ead_wr i t € mode:
{head, Head}

Depending on the value of the open/1 options head and head func, or set by function
change_header/ 2, the value of Head is none (default), { head, H} (head option), or { M F, A}
(head_f unc option).

{no_witten_itenms, NoWittenltens}

NoW i t t enl t ens isthe number of itemswritten to the log since the disk log process was created.
The following pair isreturned for halt logs opened inr ead_wr i t e mode:
{full, Full}

Ful | istrue orf al se depending on whether the halt log is full or not.
The following pairs are returned for wrap logs openedinr ead_wr i t e mode:
{no_current _bytes, integer() >= 0}

The number of bytes written to the current wrap log file.
{no_current _itens, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.
{no_itens, integer() >= 0}

Thetotal number of itemsin all wrap log files.
{current _file, integer()}

The ordinal for the current wrap log filein therange 1. . MaxNoFi | es, where MaxNoFi | es is specified by
theopen/ 1 option si ze or set by change_si ze/ 2.

{no_overfl ows, {SinceLogWasOpened, Sincelastl|nfo}}

Si nceLogWasOpened (Si ncelLast | nf 0) isthe number of times awrap log file has been filled up and a
new oneisopened ori nc_w ap_fil e/ 1 has been called since the disk log was last opened (i nf o/ 1 was
last called). Thefirsttimei nf o/ 2 iscalled after alog was (re)opened or truncated, the two values are equal .

Notice that functions chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 do not affect any value returned by
i nfoll.

log(Log, Term) -> ok | {error, Reason :: log error rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log error _rsn()}
Types:

Log = log()

Term = term()

Bytes = iodata()

log error rsn() =
no_such log | nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |
{full, log()} |

Ericsson AB. All Rights Reserved.: Kernel | 87

disk_log

{invalid header, invalid header()} |
{file error, file:filename(), file error()}

Synchronously appends aterm to a disk log. Returns ok or { error, Reason} when the term is written to disk.
Terms are written by the ordinary wri t e() function of the operating system. Hence, it is not guaranteed that the
term is written to disk, it can linger in the operating system kernel for a while. To ensure that the item is written to
disk, function sync/ 1 must be called.

| og/ 2 isused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 can also be used
for internally formatted logs if the binary is constructed with acall tot er m t o_bi nary/ 1.

Owners subscribing to notifications are notified of an error with aner r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

log terms(Log, TermList) ->

ok | {error, Reason :: log error _rsn()}
blog terms(Log, BytesList) ->
ok | {error, Reason :: log error_rsn()}
Types:
Log = log()

TermList = [term()]
BytesList = [iodata()]

log error _rsn() =
no_such log | nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |
{full, log()} |
{invalid header, invalid header()} |
{file error, file:filename(), file error()}

Synchronously appends alist of itemsto thelog. It is more efficient to use these functionsinstead of functions!| og/ 2
and bl og/ 2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist islogged as one single item, which reduces the overhead.

l og terns/ 2 is used for internaly formatted logs, and bl og _termnms/ 2 for externaly formatted logs.
bl og_terns/ 2 can dso be used for internaly formatted logs if the binaries are constructed with calls to
termto_binary/1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

next file(Log) -> ok | {error, next file error _rsn()}
Types:
Log = log()
next file error_rsn() =
no_such log | nonode |
{read only mode, log()} |
{blocked log, log()} |
{halt log, log()} |
{rotate_log, log()} |
{invalid header, invalid header()} |

88 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

{file error, file:filename(), file error()}
invalid header() = term()

For wrap logs, it forces the disk log to start logging to the next log file. It can be used, for example, with
change_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wr ap message, but if an error occurs with a reason tag of
i nval i d_header orfile_error,anerror_status messageis sent.

For rotate logs, it forces rotation of the currently active log file, compresses it and opens anew activefile for logging.

open(ArgL) -> open_ret()
Types:
ArgL = dlog options()
dlog options() = [dlog option()]
dlog option() =
{name, Log :: log()} |

{file, FileName :: file:filename()} |
{linkto, LinkTo :: none | pid()} |
{repair, Repair :: true | false | truncate} |

{type, Type :: dlog_type()} |
{format, Format :: dlog format()} |
{size, Size :: dlog size()} |
{notify, boolean()} |
{head, Head :: dlog head opt()} |
{head func, MFA :: {atom(), atom(), list()}} |
{quiet, boolean()} |
{mode, Mode :: dlog mode()}

open ret() =
{ok, Log :: log()} |
{repaired,

Log :: log(),

{recovered, Rec :: integer() >= 0},

{badbytes, Bad :: integer() >= 0}} |
{error, open error _rsn()}

open_error_rsn() =
no_such log |
{badarg, term()} |
{size mismatch,

CurrentSize :: dlog size(),

NewSize :: dlog size()} |
{arg_mismatch,

OptionName :: dlog optattr(),

CurrentValue :: term(),

Value :: term()} |
{name_already open, Log :: log(
{open read write, Log :: log()}
{open_read only, Log :: log()}
{need repair, Log :: log()} |
{not_a log file, FileName :: file:filename()} |
{invalid_index file, FileName :: file:filename()} |
{invalid header, invalid header()} |

Ericsson AB. All Rights Reserved.: Kernel | 89

disk_log

{file error, file:filename(), file error()} |
{node_already open, Log :: log()}
dlog optattr() =
name | file | linkto | repair | type | format | size |
notify | head | head func | mode
dlog size() =
infinity |
integer() >= 1 |
{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
Parameter Ar gL isalist of the following options:
{nane, Log}
Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.
{file, FileNane}

Specifies the name of thefile to be used for logged terms. If this value is omitted and the log nameis an atom or
astring, the filename defaultsto | i st s: concat ([Log, ".LOG']) for halt logs.

For wrap logs, this is the base name of the files. Each filein awrap log is called <Fi | eNane>. N, where Nis
an integer. Each wrap log also hastwo files called <Fi | eName>. i dx and <Fi | eNane>. si z.

For rotate logs, thisis the name of the active log file. The compressed files are named as<Fi | eNane>. N. gz,
where N is an integer and <Fi | eNanme>. 0. gz is the latest compressed log file. All the compressed files are
renamed at each rotation so that the latest files have the smallest index. The maximum value for N is the value
of MaxNoFi | es minus 1.

{l'i nkto, LinkTo}

If Li nkTo is a pid, it becomes an owner of the log. If Li nkTo is none, the log records that it is used
anonymously by some process by incrementing the user s counter. By default, the process that calls open/ 1
ownsthelog.

{repair, Repair}

If Repair istrue, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If f al se is specified, no automatic repair is attempted. Instead, the tuple { er r or,
{need_repair, Log}} isreturnedif anattemptismadetoopenacorruptlogfile. Ift r uncat e isspecified,
the log file becomes truncated, creating an empty log, regardless of previous content. Defaultsto t r ue, which
has no effect on logs opened in read-only mode.

{type, Type}

Thelog type. Defaultsto hal t .
{format, Fornat}

Disk log format. Defaultstoi nt er nal .
{size, Size}

Log size.

When ahalt log hasreached itsmaximum size, all attemptstolog moreitemsarerejected. Defaultstoi nfi nity,
which for halt implies that there is no maximum size.

For wrap and rotate logs, parameter Si ze canbeapair { MaxNoByt es, MaxNoFi | es} . For wraplogsit can
asobei nfinity.Inthelatter case, if thefiles of an existing wrap log with the same name can be found, the
sizeis read from the existing wrap log, otherwise an error is returned.

90 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

Wrap logs write at most MaxNoByt es bytes on each file and use MaxNoFi | es files before starting al over
with the first wrap log file. Regardless of MaxNoByt es, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

The first time an existing wrap log is opened, that is, when the disk log process is created, the value of the
option si ze is allowed to differ from the current log size, and the size of the disk log is changed as per
change_si ze/ 2.

When opening an existing wrap log, it is not necessary to supply avauefor optionsi ze, but if thelog isalready
open, that is, the disk log process exists, the supplied value must equal the current log size, otherwise the tuple
{error, {size_msmatch, CurrentSize, NewSize}} isreturned.

Before Erlang/OTP 24.0, the supplied value of option si ze was to be equal to the current log size when
opening an existing wrap log for the first time, that is, when creating the disk log process.

Rotatelogswriteat most MaxNoByt es bytesontheactivelog fileand keep thelatest MaxNoFi | es compressed
files. Regardless of MaxNoByt es, at least the header (if there is one) and one item are written on each rotate
log file before rotation.

When opening an already open halt log, option si ze isignored.
{notify, boolean()}

If t r ue, the log owners are notified when certain log events occur. Defaultsto f al se. The owners are sent one
of the following messages when an event occurs:

{di sk _|og, Node, Log, {wap, NoLostltens}}

Sent when awrap log has filled up one of its filesand a new fileis opened. NoLost | t ens isthe number
of previously logged items that were lost when truncating existing files.

{di sk_log, Node, Log, {truncated, NoLostltens}}

Sent when alog is truncated or reopened. For halt logs NoLost | t ens is the number of items written on
the log since the disk log process was created. For wrap logs NoLost | t ens is the number of items on
all wrap log files.

{di

sk_l og, Node, Log, {read_only, Itens}}

Sent when an asynchronous log attempt is made to alog file opened in read-only mode. | t ens istheitems
from the log attempt.

{di sk _|og, Node, Log, {blocked |og, Itens}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. | t enrs
isthe items from the log attempt.

{di sk_log, Node, Log, {format_external, Itens}}

Sent when function al og/ 2 or al og_t er s/ 2 isused for internally formatted logs. | t ens istheitems
from the log attempt.

sk _| og, Node, Log, full}

Sent when an attempt to log items to awrap log would write more bytes than the limit set by option si ze.

{di

{di sk _log, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1,inc_wap file/l, or
change_si ze/ 2. St at us iseitherok or{error, Error},theformeristheinitia value.

Ericsson AB. All Rights Reserved.: Kernel | 91

disk_log

{head, Head}

Specifies a header to be written first on the log file. If the log is awrap or rotate log, the item Head is written
first in each new file. Head isto be aterm if the format isi nt er nal , otherwise ani odat a() . Defaults to
none, which means that no header iswritten first on thefile.

{head_func, {MF, A}}

Specifies afunction to be called each time anew log fileis opened. Thecall M F(A) isassumed to return { ok,
Head} . Theitem Head iswritten first in each file. Head isto be atermif theformat isi nt er nal , otherwise
ani odata().

{node, Mode}
Specifiesif the log isto be opened in read-only or read-write mode. Defaultstor ead_wri t e.
{qui et, Bool ean}
Specifiesif messageswill besenttoer r or _| ogger onrecoverableerrorswiththelogfiles. Defaultstof al se.

open/ 1 returns { ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe number of
whole Erlang terms found in the file and Bad is the number of bytesin the file that are non-Erlang terms.

When adisk log is opened in read-write mode, any existing log fileis checked for. If thereis none, anew empty logis
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts
from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a log file, FileNane}} isreturned.

open/ 1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
alog, all option values except name, | i nkt 0, and not i fy are only checked against the values supplied before as
option valuesto functionopen/ 1, change_header/ 2,change_noti fy/ 3,orchange_si ze/ 2. Thus, none
of the options except nane is mandatory. If some specified value differs from the current value, atuple{ err or,
{arg_m smatch, OptionNanme, CurrentVal ue, Val ue}} isreturned.

If an owner attempts to open alog as owner once again, it is acknowledged with the return value { ok, Log},
but the state of the disk log is not affected.

A log file can be opened more than once by giving different values to option nane or by using the same file when
opening alog on different nodes. It is up to the user of module di sk_| og to ensure that not more than one disk log
process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_I| og, open, 1}]}. The function returns { error, Reason} for al other
errors.

pid2name(Pid) -> {ok, Log} | undefined

Types:
Pid = pid()
Log = log()

Returns the log name given the pid of adisk log process on the current node, or undef i ned if the specified pid is
not adisk log process.

This function is meant to be used for debugging only.

92 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

reopen(Log, File) -> ok | {error, reopen error rsn()}
reopen(Log, File, Head) -> ok | {error, reopen error rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen error_rsn()}
Types:

Log = log()

File = file:filename()

Head = term()

BHead = iodata()

reopen _error _rsn() =
no such log | nonode |
{read only mode, log()} |
{blocked log, log()} |
{same file name, log()} |
{invalid index file, file:filename()} |
{invalid header, invalid header()} |
{file error, file:filename(), file error()}

Renamesthe log fileto Fi | e and then recreates anew log file. If awrap/rotate log exists, Fi | e is used as the base
name of the renamed files. By default the header given to open/ 1 iswritten first in the newly opened log file, but if
argument Head or BHead is specified, thisitem is used instead. The header argument is used only once. Next time
awrap/rotate log file is opened, the header given to open/ 1 isused.

reopen/ 2, 3 are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
Owners subscribing to notifications receiveat r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai | ed, Error},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message { di sk_I og,
Node, {error, disk_|log stopped}}.

sync(Log) -> ok | {error, sync error _rsn()}
Types.
Log = log()
sync_error_rsn() =
no_such log | nonode |
{read only mode, log()} |
{blocked log, log()} |
{file error, file:filename(), file error()}

Ensures that the contents of the log are written to the disk. Thisis usually arather expensive operation.

truncate(Log) -> ok | {error, trunc error rsn()}
truncate(Log, Head) -> ok | {error, trunc error rsn()}
btruncate(Log, BHead) -> ok | {error, trunc error rsn()}
Types:

Log = log()

Head = term()

BHead = iodata()

trunc_error _rsn() =
no_such log | nonode |
{read only mode, log()} |

Ericsson AB. All Rights Reserved.: Kernel | 93

disk_log

{blocked log, log()} |
{invalid header, invalid header()} |
{file error, file:filename(), file error()}

Removes all items from a disk log. If argument Head or BHead is specified, thisitem is written first in the newly
truncated log, otherwise the header given to open/ 1 is used. The header argument is used only once. Next time a
wrap/rotate log file is opened, the header givento open/ 1 is used.

truncat e/ 1 isused for both internally and externally formatted logs.
t runcat e/ 2 isused for internally formatted logs, and bt r uncat e/ 2 for externally formatted logs.
Owners subscribing to notifications receiveat r uncat e message.

If the attempt to truncate thelog fail s, the disk log processterminateswith the EXIT message{ { f ai | ed, Reason},
[{di sk _|og, Fun, Arity}]}. Other processes having requests queued receive the message { di sk_I og,
Node, {error, disk_|log_stopped}}.

unblock(Log) -> ok | {error, unblock error _rsn()}
Types:
Log = log()
unblock error rsn() =
no_such log | nonode |

{not_blocked, log()} |
{not blocked by pid, log()}

Unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3),wap_l og reader(3)

94 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
lineflag - | oader i net. All hosts specified with command-line flag - host s Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter st art _boot _ser ver.

Theer| boot _server canread regular filesand filesin archives. Seecode(3) ander| _pri m | oader (3)
in ERTS.

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. The file format, semantics, interfaces, and so on, can be changed in a future release.

Exports
add slave(Slave) -> ok | {error, Reason}
Types:

Slave = Host

Host = inet:ip address() | inet:hostname()
Reason = {badarg, Slave}

AddsaSl ave nodeto thelist of allowed Slave hosts.

delete slave(Slave) -> ok | {error, Reason}
Types:
Slave = Host
Host = inet:ip address() | inet:hostname()
Reason = {badarg, Slave}

Deletesa Sl ave node from the list of allowed dave hosts.

start(Slaves) -> {ok, Pid} | {error, Reason}
Types:
Slaves = [Host]
Host = inet:ip address() | inet:hostname()
Pid = pid()
Reason = {badarg, Slaves}
Starts the boot server. Sl aves isalist of IP addresses for hosts, which are allowed to use this server as a boot server.

start_link(Slaves) -> {ok, Pid} | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 95

erl_boot_server

Slaves = [Host]

Host = inet:ip_address() | inet:hostname()
Pid = pid()

Reason = {badarg, Slaves}

Startsthe boot server and linksto the caller. Thisfunctionisused to start the server if itisincluded in asupervision tree.

which slaves() -> Slaves
Types:
Slaves = [Slave]
Slave =
{Netmask :: inet:ip address(), Address :: inet:ip address()}

Returns the current list of allowed slave hosts.

SEE ALSO

erts:init(3),erts:erl_primloader(3)

96 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

erl_ddll

Erlang module

This module provides an interface for loading and unloading Erlang linked-in driversin runtime.

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions| oad/ 2 and unl oad/ 1 are enough to getting started.

The driver isto be provided as a dynamically linked library in an object code format specific for the platform in use,
thatis, . so fileson most Unix systemsand . ddl fileson Windows. An Erlang linked-in driver must provide specific
interfacesto the emulator, so this moduleis not designed for loading arbitrary dynamic libraries. For moreinformation
about Erlang drivers, seeerts: erl _dri ver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use addll-driver, we use theterm user. A process can have many users (different modul es needing the
same driver) and many processes running the same code, making up many users of adriver.

Inthe basic scenario, each user loadsthe driver before starting to useit and unloadsthe driver when done. Thereference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wantsit (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can aso have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a" When Needed Basis'

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver isawaysreference counted and as long as a process keeping the driver loaded
isstill alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:
load/2 and unload/1

When using thel oad/ unl oad interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unl oad/ 1 can return immediately, as the users have no interest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If a process having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function | oad/ 2 returns ok when any instance of the driver is present. Thus, if adriver is
waiting to get unloaded (because of open ports), it ssmply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to adriver that no
user hasloaded. The portsthat are still open when the last user callsunl oad_dri ver/ 1 or when the last
process having the driver loaded dies, are killed with reason dr i ver _unl oaded.

The function names| oad_dri ver andunl oad_dri ver arekept for backward compatibility.

Ericsson AB. All Rights Reserved.: Kernel | 97

erl_ddll

L oading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is a little more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of a driver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processesin the system from using the driver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver isloaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is already in progress is always an error. Using the high-level functions, it is
also an error to demand rel oading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2
This pair of functionsis used when reloading is to be done after the last open port to the driver is closed.

Asr el oad/ 2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interfacet ry | oad/ 3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
dri ver _unl oaded to alow for new driver code to get |oaded.

However, if another process has the driver loaded, caling rel oad_dri ver returns error code
pendi ng_pr ocess. Asstated earlier, the recommended designisto not allow other usersthan the"driver
reloader” to demand loading of the driver in question.

Data Types

driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types.
MonitorRef = reference()

Removes adriver monitor in much the ssmeway aser | ang: denoni t or/ 1 in ERTS does with process monitors.
For details about how to create driver monitors, seeroni tor/ 2,try_| oad/ 3,andtry_unl oad/ 2.

The function throws abadar g exception if the parameter isnot ar ef er ence() .

format error(ErrorDesc) -> string()
Types:

98 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

ErrorDesc = term()

Takes an Er r or Desc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1is called in the same instance of the Erlang virtual
machine asthe error appeared in (meaning the same operating system process).

info() -> AllInfolList
Types.
AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfolList}
DriverName = string()
Infolist [InfoIltem]
Infoltem {Tag :: atom(), Value :: term()}

Returnsalist of tuples{ Dri ver Nane, | nfoList}, wherel nfolLi st istheresult of calingi nf o/ 1 for that
Dr i ver Nane. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfolList

Types.
Name = driver()
InfolList = [InfoItem, ...]

InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples{ Tag, Val ue}, where Tag is the information item and Val ue is the result of calling
i nf o/ 2 withthisdriver name and thistag. Theresultisatuplelist containing all information available about adriver.

The following tags appearsin the list:

e processes
e driver_options

e port_count

e linked_in_driver

e pernanent

e awaiting_load

e awaiting_unl oad

For a detailed description of each value, seei nf o/ 2.

The function throws abadar g exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:
Name = driver()
Tag =
processes | driver options | port_count | linked in driver |

Ericsson AB. All Rights Reserved.: Kernel | 99

erl_ddll

permanent | awaiting load | awaiting unload
Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Val ue differs between different tags:

processes

Returns all processes containing users of the specific driversasalist of tuples{ pi d(), i nteger() >= 0},
wherei nt eger () denotesthe number of usersin processpi d() .

driver_options

Returnsalist of the driver options provided when loading, and any options set by the driver during initialization.
Theonly valid optioniski | | _ports.

port _count

Returns the number of ports (ani nt eger () >= 0) using the driver.
i nked_i n_driver

Returnsabool ean(), whichist r ue if thedriver isastaticaly linked-in one, otherwisef al se.
per manent

Returns abool ean(), whichist r ue if the driver has made itself permanent (and is not a statically linked-
in driver), otherwisef al se.

awai ti ng_| oad

Returns a list of al processes having monitors for | oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nt eger () isthe number of monitors held by process pi d() .

awai t i ng_unl oad

Returns a list of all processes having monitors for unl oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthenumber of monitors held by processpi d() .

If option| i nked_i n_dri ver or per manent returnstr ue, all other optionsreturn | i nked_i n_dri ver or
per manent , respectively.

The function throws abadar g exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}
Types.
Path = path()
Name = driver()
ErrorDesc = term()
Loads and links the dynamic driver Nane. Pat h isafile path to the directory containing the driver. Nane must be a

shareable object/dynamic library. Two driverswith different Pat h parameters cannot be loaded under the same name.
Nane isastring or atom containing at least one character.

The Nane specified is to correspond to the filename of the dynamically loadable object file residing in the directory
specified as Pat h, but without the extension (that is, . s0). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as Erlang module names correspond to the names
of the. beamfiles.

If the driver was previously unloaded, but is still present because of open ports to it, a call to | oad/ 2 stops the
unloading and keepsthe driver (aslong as Pat h isthe same), and ok isreturned. If you really want the object code to

100 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

bereloaded, user el oad/ 2 orthelow-level interfacet ry_| oad/ 3 instead. Seealsothedescriptionof di f f er ent
scenar i os for loading/unloading in the introduction.

If more than one processtriesto load an already loaded driver with the same Pat h, or if the same processtriesto load
it many times, the function returns ok . The emulator keepstrack of thel oad/ 2 calls, so that acorresponding number
of unl oad/ 2 calls must be done from the same process before the driver gets unloaded. It is therefore safe for an
application to load a driver that is shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It isnot allowed to load multiple drivers with the same name but with different Pat h parameters.

Pat h is interpreted literally, so that all loaders of the same driver must specify the same literal Pat h string,
although different paths can point out the same directory in the file system (because of use of relative paths and
links).

On success, the function returns ok. On failure, the return valueis{ err or, Err or Desc}, where Er r or Desc is
an opague term to be translated into human readable form by function f or mat _error/ 1.

For more control over the error handling, usethet ry_| oad/ 3 interface instead.
The function throws abadar g exception if the parameters are not specified as described here.

load driver(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver()

ErrorDesc = term()

Works essentially as| oad/ 2, but loads the driver with other options. All ports using the driver are killed with reason
dri ver _unl oaded when the driver isto be unloaded.

The number of loads and unloads by different users influences the loading and unloading of a driver file. The port
killing therefore only occurs when the last user unloads the driver, or when the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Usingtry | oad/ 3 with
{driver_options,[kill_ports]} intheoption list givesthe same effect regarding the port killing.

The function throws abadar g exception if the parameters are not specified as described here.

loaded drivers() -> {ok, Drivers}
Types:

Drivers = [Driver]

Driver = string()

Returns alist of all the available drivers, both (statically) linked-in and dynamically loaded ones.
The driver names are returned as alist of strings rather than alist of atoms for historical reasons.
For more information about drivers, seei nf o.

monitor(Tag, Item) -> MonitorRef
Types:

Ericsson AB. All Rights Reserved.: Kernel | 101

erl_ddll

Tag = driver

Item = {Name, When}
Name = driver()
When = loaded | unloaded | unloaded only

MonitorRef = reference()

Creates a driver monitor and works in many ways as er | ang: noni t or/ 2 in ERTS, does for processes. When
a driver changes state, the monitor results in a monitor message that is sent to the calling process. Moni t or Ref
returned by this function is included in the message sent.

Aswith process monitors, each driver monitor set only generates one single message. The monitor is"destroyed" after
the message is sent, so it is then not needed to call denoni t or/ 1.

Moni t or Ref can also be used in subsequent callsto denoni t or / 1 to remove amonitor.
The function accepts the following parameters:
Tag

The monitor tag is always dr i ver, as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be specified for consistence.

Item

Parameter | t em specifies which driver to monitor (the driver name) and which state change to monitor. The
parameter isatuple of arity two whosefirst element isthe driver name and second element is one of thefollowing:

| oaded

Notifieswhenthedriver isreloaded (or loaded if |oading isunderway). It only makes senseto monitor drivers
that are in the process of being loaded or reloaded. A future driver name for loading cannot be monitored.
That only resultsin a DOAN message sent immediately. Monitoring for loading istherefore most useful when
triggered by functiont ry_| oad/ 3, where the monitor is created because the driver is in such a pending
State.

Setting adriver monitor for | oadi ng eventually leads to one of the following messages being sent:
{*UP", reference(), driver, Nane, |oaded}

This message is sent either immediately if the driver is aready loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded before creating a monitor for loading.
{"UP", reference(), driver, Nane, pernanent}

This message is sent if reloading was expected, but the (old) driver made itself permanent before
reloading. It is also sent if the driver was permanent or statically linked-in when trying to create the
monitor.

{' DOWN , reference(), driver, Nane, |oad_cancell ed}

Thismessage arrivesif reloading was underway, but the requesting user cancelled it by dying or calling
try_unl oad/ 2 (or unl oad/ 1/unl oad_dri ver/ 1) again before it was rel oaded.

{'DOWN , reference(), driver, Nane, {load failure, Failure}}

This message arrivesif reloading was underway but the loading for some reason failed. TheFai | ur e
term is one of the errors that can be returned fromt ry_| oad/ 3. The error term can be passed to
format _error/ 1 fortrangation into human readable form. Notice that the trand ation must be done
in the same running Erlang virtual machine as the error was detected in.

102 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

unl oaded

Monitors when a driver gets unloaded. If one monitors a driver that is not present in the system, one
immediately gets notified that the driver got unloaded. Thereisno guarantee that the driver was ever loaded.

A driver monitor for unload eventually resultsin one of the following messages being sent:
{'DOWN , reference(), driver, Nane, unloaded}

The monitored driver instanceis now unloaded. Asthe unload can be aresult of ar el oad/ 2 request,
the driver can once again have been |oaded when this message arrives.

{*UP", reference(), driver, Nane, unload cancell ed}

This message is sent if unloading was expected, but while the driver was waiting for all ports to get
closed, anew user of the driver appeared, and the unloading was cancelled.

Thismessage appearsif { ok, pendi ng_dri ver} wasreturnedfromt ry_unl oad/ 2 for thelast
user of the driver, and then{ ok, al r eady_| oaded} isreturnedfromacall totry_| oad/ 3.

If onereally wantsto monitor when the driver gets unloaded, this message distorts the picture, because
no unloading wasdone. Optionunl oaded_onl y createsamonitor similar toanunl oaded monitor,
but never resultsin this message.

{*UP", reference(), driver, Nane, permanent}

Thismessageis sent if unloading was expected, but the driver madeitself permanent before unloading.
It isalso sent if trying to monitor a permanent or statically linked-in driver.

unl oaded_only

A monitor created as unl oaded_onl y behaves exactly as one created as unl oaded except that the
{*UP', reference(), driver, Name, unload_cancel |l ed} messageisnever sent, but the
monitor instead persists until the driver really gets unloaded.

The function throws abadar g exception if the parameters are not specified as described here.

reload(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Reloads the driver named Name from a possibly different Pat h than previoudly used. This function is used in the
code changescenar i o described in the introduction.

If there are other users of thisdriver, thefunctionreturns{ er r or, pendi ng_pr ocess}, butif there are no other
users, the function call hangs until all open ports are closed.

Avoid mixing multiple users with driver reload requests. ‘

To avoid hanging on open ports, use functiontry_| oad/ 3 instead.
The Nane and Pat h parameters have exactly the same meaning as when calling the plain function| oad/ 2.

On success, the function returns ok.. On failure, the function returns an opaque error, except thependi ng_pr ocess
error described earlier. The opague errors are to be trandated into human readable form by function
format _error/ 1.

Ericsson AB. All Rights Reserved.: Kernel | 103

erl_ddll

For more control over the error handling, usethet ry_| oad/ 3 interface instead.

The function throws abadar g exception if the parameters are not specified as described here.

reload driver(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Works exactly asr el oad/ 2, but for driversloaded with thel oad_dri ver/ 2 interface.

As this interface implies that ports are killed when the last user disappears, the function does not hang waiting for
portsto get closed.

For more details, see scenar i 0s in this module description and the function description for r el oad/ 2.
The function throws abadar g exception if the parameters are not specified as described here.

try load(Path, Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorDesc}

Types:

Path = path()

Name = driver()

OptionList = [Option]

Option =
{driver options, DriverOptionList} |
{monitor, MonitorOption} |
{reload, ReloadOption}

DriverOptionList = [DriverOption]
DriverOption = kill ports

MonitorOption = ReloadOption = pending driver | pending
Status = loaded | already loaded | PendingStatus

PendingStatus = pending driver | pending process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError

ErrorAtom =
linked in driver | inconsistent | permanent |
not loaded by this process | not loaded | pending reload |
pending process

OpaqueError = term()

Provides more control than the | oad/ 2/r el oad/ 2 and | oad_dri ver/ 2/rel oad_dri ver/ 2 interfaces. It
never waits for completion of other operations related to the driver, but immediately returns the status of the driver
as one of the following:

{ok, | oaded}
The driver was loaded and isimmediately usable.

104 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{ok, already_l| oaded}

Thedriver wasalready |oaded by another processor isin use by aliving port, or both. Theload by youisregistered
and acorresponding t ry_unl oad is expected sometime in the future.

{ok, pending_driver}or{ok, pending driver, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded (open ports use it). Still, unload is expected when you are done with the driver. This return
value mostly occurs when options { r el oad, pendi ng_dri ver} or {rel oad, pendi ng} are used, but
can occur when another user is unloading a driver in parallel and driver option ki I | _ports isset. In other
words, this return value always needs to be handled.

{ok, pending process}or{ok, pending_process, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded by another user (not only by a port, in which case{ ok, pendi ng_dri ver} would have been
returned). Still, unload is expected when you are done with the driver. Thisreturn value only occurs when option
{rel oad, pendi ng} isused.

When the function returns{ ok, pendi ng_dri ver} or{ok, pendi ng_process}, onecan get information
about when the driver isactually loaded by using option { noni t or, Moni t or Opti on}.

When monitoring is requested, and a corresponding { ok, pendi ng_dri ver} or{ok, pendi ng_process}
would be returned, the function instead returnsatuple{ ok, Pendi ngSt at us, reference()} andtheprocess
then gets a monitor message later, when the driver gets loaded. The monitor message to expect is described in the
function description of nmoni t or/ 2.

In case of loading, monitoring can not only get triggered by using option {r el oad, Rel oadOpti on}, but
also in specia cases where the load error is transient. Thus, { noni t or, pendi ng_dri ver} isto be used
under basicaly all real world circumstances.

The function accepts the following parameters:
Pat h

Thefile system path to the directory where the driver object file islocated. The filename of the object file (minus
extension) must correspond to the driver name (used in parameter Nane) and the driver must identify itself with
the same name. Pat h can be provided asaniolist(), meaning it can bealist of otheri ol i st () s, characters (8-
bit integers), or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Pat h parameter must be consistent throughout the system. A driver isto, by al users,
be loaded using the same literal Pat h. The exception is when reloading is requested, in which case Pat h can
be specified differently. Notice that all users trying to load the driver later need to use the new Pat h if Pat h
is changed using ar el oad option. This is yet another reason to have only one loader of a driver one wants
to upgrade in arunning system.

Name

This parameter is the name of the driver to be used in subsequent calls to function er | ang: open_port in
ERTS. The name can be specified asani ol i st () or anat on() . The name specified when loading is used
to find the object file (with the help of Pat h and the system-implied extension suffix, that is, . s0). The name
by which the driver identifies itself must also be consistent with this Name parameter, much as the module name
of aBeam file much corresponds to its filename.

Ericsson AB. All Rights Reserved.: Kernel | 105

erl_ddll

Opti onLi st

Some options can be specified to control the loading operation. The options are specified as alist of two-tuples.
The tuples have the following values and meanings:

{driver_options, DriverOptionList}
Thisisto provide options that changes its general behavior and "sticks' to the driver throughout its lifespan.

The driver options for a specified driver name need always to be consistent, even when the driver is
reloaded, meaning that they are as much a part of the driver as the name.

The only allowed driver optioniski | I _port s, which meansthat all ports opened to the driver are killed
with exit reason dr i ver _unl oaded when no process any longer has the driver loaded. This situation
arises either when the last user callst ry_unl oad/ 2, or when the last process having loaded the driver
exits.

{noni tor, MonitorOption}
A MonitorOptiontelstry | oad/ 3 to trigger a driver monitor under certain conditions. When the

monitor is triggered, the function returns a three-tuple { ok, Pendi ngSt atus, reference()},
wherer ef er ence() isthe monitor reference for the driver monitor.

Only one Moni t or Opt i on can be specified. It is one of the following:

e Theatompendi ng, which meansthat amonitor isto be created whenever aload operation is delayed,

 Theatompendi ng_dri ver ,inwhichamonitor iscreated whenever the operation is delayed because
of open portsto an otherwise unused driver.

Optionpendi ng_dri ver isof littleuse, but ispresent for completeness, asit iswell defined which reload
optionsthat can giveriseto which delays. However, it can beagood ideato usethe sameMoni t or Opt i on
asthe Rel oadOpt i on, if present.

If reloading is not requested, it can still be useful to specify option noni t or, as forced unloads (driver
optionki I I _ports oroptionki |l _portstotry_ unl oad/ 2) trigger atransient state where driver
loading cannot be performed until all closing ports are closed. Thus, ast ry_unl oad can, in aimost all
situations, return{ ok, pendi ng_dri ver},awaysspecifyatleast{ noni t or, pendi ng _dri ver}
in production code (see the monitor discussion earlier).

{rel oad, Rel oadOption}

Thisoption is used to reload a driver from disk, most often in a code upgrade scenario. Having ar el oad
option also implies that parameter Pat h does not need to be consistent with earlier loads of the driver.

To reload a driver, the process must have loaded the driver before, that is, there must be an active user of
the driver in the process.

Ther el oad option can be either of the following:
pendi ng

Withtheatom pendi ng, reloading isrequested for any driver and is effectuated when all ports opened
to the driver are closed. The driver replacement in this case takes place regardless if there are still
pending users having the driver loaded.

Theoption also triggers port-killing (if driver optionki | | _por t s isused) although there are pending
users, making it usablefor forced driver replacement, but laying much responsibility onthedriver users.
The pending option is seldom used as one does not want other users to have loaded the driver when
code change is underway.

106 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

pendi ng_dri ver

This option is more useful. Here, reloading is queued if the driver is not loaded by any other users,
but the driver has opened ports, in which case { ok, pendi ng_dri ver} isreturned (anoni t or
option is recommended).

If the driver is unloaded (not present in the system), error code not _| oaded isreturned. Optionr el oad
isintended for when the user has already |oaded the driver in advance.

The function can return numerous errors, some can only be returned given a certain combination of options.

Some errors are opague and can only be interpreted by passing them to function f or mat _error/ 1, but some can
be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an Erlang statically linked-in driver, which cannot be manipulated with
thisAPI.

{error,inconsistent}
Thedriver is already |oaded with other Dr i ver Opt i onLi st or adifferent literal Pat h argument.
This can occur evenif ar el oad option is specified, if Dri ver Opt i onLi st differsfrom the current.
{error, pernanent}

The driver has requested itself to be permanent, making it behave like an Erlang linked-in driver and can no
longer be manipulated with this API.

{error, pending_process}

The driver isloaded by other userswhen option{r el oad, pendi ng_dri ver} was specified.
{error, pending_rel oad}

Driver reload is already requested by another user when option{r el oad, Rel oadQOpti on} was specified.
{error, not | oaded by this process}

Appears when option r el oad is specified. The driver Nanre is present in the system, but there is no user of it
in this process.

{error, not_I| oaded}

Appears when option r el oad is specified. The driver Nane is not in the system. Only drivers loaded by this
process can be rel oaded.

All other error codes are to be translated by function f or mat _error/ 1. Noticethat callstof or mat _err or are
to be performed from the same running instance of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.

If the arguments or options are malformed, the function throws abadar g exception.

try unload(Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorAtom}

Types.

Ericsson AB. All Rights Reserved.: Kernel | 107

erl_ddll

Name = driver()

OptionList = [Option]

Option = {monitor, MonitorOption} | kill ports
MonitorOption = pending driver | pending

Status = unloaded | PendingStatus

PendingStatus = pending driver | pending process
Ref = reference()

ErrorAtom =

linked in driver | not loaded | not loaded by this process |
permanent

Thisisthelow-level function to unload (or decrement reference counts of) adriver. It can be used to force port killing,
in much the same way asthedriver optionki | | _port s implicitly does. Also, it can trigger amonitor either because
other users still have the driver loaded or because open ports use the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (that is, this user) no longer needs the driver. That can, if there are no other users, trigger unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.

If the driver hasoption ki | | _ports set,orif ki | | _ports isspecified as an option to this function, all pending
ports using this driver are killed when unloading is done by the last user. If no port-killing is involved and there are
open ports, the unloading is delayed until no more open ports use the driver. If, in this case, another user (or even this
user) loads the driver again before the driver is unloaded, the unloading never takes place.

To allow the user to request unloading to wait for actual unloading, moni t or triggers can be specified in much
the same way as when loading. However, as users of this function seldom are interested in more than decrementing
the reference counts, monitoring is seldom needed.

If optionki I | _port s isused, monitor trigging is crucial, as the ports are not guaranteed to be killed until the
driver is unloaded. Thus, a monitor must be triggered for at least the pendi ng_dr i ver case.

The possible monitor messages to expect are the same as when using option unl oaded to function noni t or / 2.
The function returns one of the following statuses upon success:
{ok, unl oaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and no more users require it to be loaded.
{ok, pending_driver}or{ok, pending driver, reference()}

Indicates that this call removed the last user from the driver, but there are still open ports using it. When al ports
are closed and no new users have arrived, the driver is reloaded and the name and memory reclaimed.

Thisreturn valueisvalid even if option ki | | _port s was used, askilling ports can be a process that does not
completeimmediately. However, the condition isin that case transient. Monitors are always useful to detect when
the driver isreally unloaded.

{ok, pending process}or{ok, pending_process, reference()}

The unload request is registered, but other users still hold the driver. Notice that theterm pendi ng_pr ocess
can refer to the running process; there can be more than one user in the same process.

108 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Thisisanormal, healthy, return valueif the call wasjust placed to inform the emul ator that you have no further use
of thedriver. It isthe most common return value in the most common scenar i o described in the introduction.

The function accepts the following parameters:
Nanme

Nane isthe name of the driver to be unloaded. The name can be specified asani ol i st () orasanat on().
Opt i onLi st

Argument Opt i onLi st can be used to specify certain behavior regarding ports and triggering monitors under
certain conditions:

kill_ports

Forces killing of all ports opened using this driver, with exit reason dr i ver _unl oaded, if you are the
last user of the driver.

If other users have the driver loaded, this option has no effect.

To get the consistent behavior of killing ports when the last user unloads, use driver optionki | | _ports
when loading the driver instead.

{moni tor, NbnitorQOption}
Creates adriver monitor if the condition specified in Moni t or Opt i on istrue. The valid options are:
pendi ng_dri ver
Creates adriver monitor if the return valueisto be{ ok, pendi ng_dri ver}.
pendi ng
Createsamonitor if thereturnvalueis{ ok, pendi ng_dri ver} or{ ok, pendi ng_process}.

The pendi ng_dri ver Moni t or Opti on is by far the most useful. It must be used to ensure that the
driver really is unloaded and the ports closed whenever optionki | | _port s isused, or thedriver can have
been loaded with driver optionki | | _ports.

Using themonitor triggersinthecall tot ry _unl oad ensuresthat the monitor is added before the unloading
is executed, meaning that the monitor is always properly triggered, which is not the case if noni t or/ 2
iscalled separately.

The function can return the following error conditions, all well specified (no opague values):
{error, linked_in_driver}

Y ou were trying to unload an Erlang statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_| oaded}
The driver Nane is not present in the system.
{error, not | oaded by this process}
The driver Nane is present in the system, but there is no user of it in this process.

Asaspecial case, drivers can be unloaded from processes that have done no corresponding call tot ry_| oad/ 3
if, and only if, there are no user s of thedriver at all, which can occur if the process containing the last user dies.

{error, pernmanent}

Thedriver has made itself permanent, in which case it can no longer be manipulated by thisinterface (much like
astatically linked-in driver).

The function throws abadar g exception if the parameters are not specified as described here.

Ericsson AB. All Rights Reserved.: Kernel | 109

erl_ddll

unload(Name) -> ok | {error, ErrorDesc}
Types.

Name = driver()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Narre. If the caller is the last user of the driver, and no more open
ports use the driver, the driver gets unloaded. Otherwise, unloading is delayed until all ports are closed and no users
remain.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For use scenarios, seethedescr i pt i on inthe beginning of this module.

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

unload driver(Name) -> ok | {error, ErrorDesc}
Types.

Name = driver()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Nanre. If the caller isthe last user of the driver, all remaining open
ports using the driver are killed with reason dr i ver _unl oaded and the driver eventually gets unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For use scenarios, seethedescr i pti on in the beginning of this module.

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

See Also

erts:erl _driver(4),erts:driver_entry(4)

110 | Ericsson AB. All Rights Reserved.: Kernel

erl_epmd

erl_epmd

Erlang module

This module communicates with the EPMD daemon, see epmd. To implement your own epmd module please see
ERTS User's Guide: How to Implement an Alternative Node Discovery for Erlang Distribution

Exports

start_link() -> {ok, pid()} | ignore | {error, term()}
Thisfunction isinvoked as this module is added as a child of theer | _di stri buti on supervisor.

register node(Name, Port) -> Result
register node(Name, Port, Driver) -> Result

Types.
Name = string()
Port = integer() >= 0

Driver = inet tcp | inet6 tcp | inet | inet6
Creation = integer() >=0 | -1
Result = {ok, Creation} | {error, already registered} | term()

Registers the node with epnd and tells epmd what port will be used for the current node. It returns a creation number.
This number is incremented on each register to help differentiate a new node instance connecting to epmd with the
same name.

After the node has successfully registered with epmd it will automatically attempt reconnect to the daemon if the
connection is broken.

port please(Name, Host) ->
{port, Port, Version} |
noport | closed |
{error, term()}

port please(Name, Host, Timeout) ->
{port, Port, Version} |
noport | closed |
{error, term()}

Types:
Name = atom() | string()
Host = atom() | string() | inet:ip address()

Timeout = integer() >= 0 | infinity
Port = Version = integer() >= 0

Requests the distribution port for the given node of an EPMD instance. Together with the port it returns adistribution
protocol version which has been 5 since Erlang/OTP R6.

listen port please(Name, Host) -> {ok, Port}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 111

erl_epmd

Name = atom() | string()
Host = atom() | string() | inet:ip address()
Port = integer() >= 0

Called by the distribution module to get which port the local node should listen to when accepting new distribution
requests.

address please(Name, Host, AddressFamily) ->
Success | {error, term()}

Types:
Name = string()
Host = string() | inet:ip_address()
AddressFamily = inet | inet6
Port = Version = integer() >= 0
Success =

{ok, inet:ip address()} |
{ok, inet:ip address(), Port, Version}

Called by the distribution module to resolves the Host to an |P address of aremote node.

As an optimization this function may also return the port and version of the remote node. If port and version are
returned por t _pl ease/ 3 will not be called.

names (Host) -> {ok, [{Name, Port}]} | {error, Reason}

Types:
Host = atom() | string() | inet:ip address()
Name = string()
Port = integer() >= 0

Reason = address | file:posix()

Cadlled by net _adm nanes/ 0. Host defaults to the localhost. Returns the names and associated port numbers of
the Erlang nodesthat epnd registered at the specified host. Returns{ er r or, addr ess} if epnd isnot operational.

Example:

(arne@dunn)1> erl epmd:names(localhost).
{ok, [{"arne",40262}1}

112 | Ericsson AB. All Rights Reserved.: Kernel

erl_prim_loader

erl_prim_loader

Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_loader(3) in the ERTS
reference manual instead.

Ericsson AB. All Rights Reserved.: Kernel | 113

erlang

erlang

Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the ERTS reference manual
instead.

114 | Ericsson AB. All Rights Reserved.: Kernel

erpc

erpc

Erlang module

Thismodule provide services similar to Remote Procedure Calls. A remote procedure call isamethod to call afunction
on a remote node and collect the answer. It is used for collecting information on a remote node, or for running a
function with some specific side effects on the remote node.

This is an enhanced subset of the operations provided by the r pc module. Enhanced in the sense that it makes it
possible to distinguish between returned value, raised exceptions, and other errors. er pc also has better performance
and scalability than the original r pc implementation. However, current r pc modulewill utilizeer pc inorder to also
provide these properties when possible.

In order for an er pc operation to succeed, the remote node also needs to support er pc. Typically only ordinary
Erlang nodes as of OTP 23 have er pc support.

Note that it is up to the user to ensure that correct code to execute viaer pc is available on the involved nodes.

For some important information about distributed signals, see the Blocking Signaling Over Distribution section
in the Processes chapter of the Erlang Reference Manual. Blocking signaling can, for example, cause timeoutsin
er pc to be significantly delayed.

Data Types

request id()

An opague request identifier. For more information seesend_r equest / 4.
request id collection()

An opague collection of request identifiers (r equest _i d()) where each request identifier can be associated with a
label chosen by the user. For more information seer eqi ds_new 0.

timeout time() = 0..4294967295 | infinity | {abs, integer()}
0..4294967295

Timeout relative to current time in milliseconds.
infinity

Infinite timeout. That is, the operation will never time out.
{abs, Tineout}

An absolute Erlang monotonic time timeout in milliseconds. That is, the operation will time out when
erl ang: nonotonic_tinme(mllisecond) returnsavauelarger than or equal to Ti neout . Ti neout
isnot allowed to identify atime further into the future than 4294967295 milliseconds. |dentifying the timeout
using an absolute timeout value is especially handy when you have a deadline for responses corresponding to
a complete collection of requests (r equest i d_col | ecti on()), since you do not have to recalculate the
relative time until the deadline over and over again.

Ericsson AB. All Rights Reserved.: Kernel | 115

erpc

Exports

call(Node, Fun) -> Result
call(Node, Fun, Timeout) -> Result
Types:

Node = node()

Fun = function()

Timeout = timeout time()

Result = term()

Thesameascalinger pc: cal | (Node, erlang, apply, [Fun,[]], Tineout).Mayrasealthesame
exceptionsascal | / 5 plusan{ er pc, badarg} error exceptionif Fun isnot afun of zero arity.

Thecdl er pc: cal | (Node, Fun) isthesameasthecall er pc: cal | (Node, Fun,infinity).

call(Node, Module, Function, Args) -> Result
call(Node, Module, Function, Args, Timeout) -> Result
Types:

Node = node()

Module = Function = atom()

Args = [term()]

Timeout = timeout time()

Result = term()

Evaluates appl y(Modul e, Functi on, Args) onnode Node and returns the corresponding value Resul t .
Ti meout setsan upper timelimit for thecal | operation to complete.

The call erpc: cal | (Node, Modul e, Function, Args) isequivalent tothecall erpc: cal | (Node,
Modul e, Function, Args, infinity)

The cal | () function only returns if the applied function successfully returned without raising any uncaught
exceptions, the operation did not time out, and no failures occurred. In all other cases an exception is raised. The
following exceptions, listed by exception class, can currently beraised by cal | () :

t hr ow

The applied function called t hr ow(Val ue) and did not catch this exception. The exception reason Val ue
equals the argument passedtot hr ow/ 1.

exit
Exception reason:
{exception, ExitReason}

The applied function called exi t (Exi t Reason) and did not catch this exception. The exit reason
Exi t Reason equalsthe argument passedtoexi t/ 1.

{signal, ExitReason}

The process that applied the function received an exit signal and terminated due to this signal. The process
terminated with exit reason Exi t Reason.

error

Exception reason:

116 | Ericsson AB. All Rights Reserved.: Kernel

erpc

{exception, ErrorReason, StackTrace}

A runtime error occurred which raised an error exception while applying the function, and the applied
function did not catch the exception. The error reason Er r or Reason indicates the type of error that
occurred. St ackTr ace is formatted as when caught in at ry/ cat ch construct. The St ackTr ace is
limited to the applied function and functions called by it.

{erpc, ERpcErrorReason}
The er pc operation failed. The following ERpcEr r or Reasons are the most common ones:
badar g
If any one of these are true;
* Node isnot an atom.
e Modul e isnot an atom.
e Functi on isnot an atom.
« Argsisnotalist. Notethat thelist is not verified to be a proper list at the client side.
e Ti meout isinvalid.
noconnecti on
The connection to Node waslost or could not be established. The function may or may not be applied.
systeml|limt

The er pc operation failed due to some system limit being reached. This typically due to failure to
create a process on the remote node Node, but can be other things as well.

ti neout

The er pc operation timed out. The function may or may not be applied.
not sup

The remote node Node does not support thiser pc operation.

If the er pc operation fails, but it is unknown if the function is/will be applied (that is, a timeout or a connection
loss), the caller will not receive any further information about the result if/when the applied function completes. If
the applied function explicitly communicates with the calling process, such communication may, of course, reach the
calling process.

Y ou cannot make any assumptions about the processthat will performtheappl y() . It may bethe calling process
itself, aserver, or afreshly spawned process.

cast(Node, Fun) -> ok
Types.

Node = node()

Fun = function()

Thesameascaling er pc: cast (Node, erl ang, apply, [Fun,[]]).
cast/ 2 falswithan{er pc, badarg} error exceptionif:

* Node isnot an atom.
e Funisnot aafun of zero arity.

Ericsson AB. All Rights Reserved.: Kernel | 117

erpc

cast(Node, Module, Function, Args) -> ok
Types.

Node = node()

Module = Function = atom()

Args = [term()]

Evaluatesappl y(Modul e, Function, Args) onnodeNode. No responseisdelivered to the calling process.
cast () returns immediately after the cast request has been sent. Any failures beside bad arguments are silently
ignored.

cast/ 4 falswithan{er pc, badarg} error exceptionif:

* Node isnot an atom.

* Mbodul e isnot an atom.

e Functi on isnot an atom.

 Argsisnotalist. Notethat thelist is not verified to be a proper list at the client side.

You cannot make any assumptions about the process that will perform the appl y() . It may be a server, or a
freshly spawned process.

check response(Message, RequestId) ->
{response, Result} | no response
Types.
Message = term()
RequestId = request id()
Result = term()

Check if amessageisaresponsetoacal | request previously made by the calling processusingsend_r equest / 4.
Request | d should be the value returned from the previousy made send_request/4 cal, and the
corresponding response should not already have been received and handled to completion by check _r esponse/ 2,
recei ve_response/ 2,orwait _response/ 2. Message isthe message to check.

If Message does not correspond to the response, the atom no_r esponse isreturned. If Message corresponds to
the response, the cal | operation is completed and either the result isreturned as{ r esponse, Resul t} where
Resul t corresponds to the value returned from the applied function or an exception is raised. The exceptions that
can be raised corresponds to the same exceptions as can be raised by cal | / 4. That is, no { er pc, ti meout}
error exception can beraised. check_response() will fail withan{er pc, badar g} exceptionif/when an
invalid Request | d is detected.

If the er pc operation fails, but it is unknown if the function is'will be applied (that is, a connection loss), the caller
will not receive any further information about the result if/when the applied function compl etes. If the applied function
explicitly communicates with the calling process, such communication may, of course, reach the calling process.

check response(Message, RequestIdCollection, Delete) ->
{{response, Result},
Label, NewRequestIdCollection} |
no_response | no_request

Types:

118 | Ericsson AB. All Rights Reserved.: Kernel

erpc

Message = term()
RequestIdCollection = request id collection()
Delete = boolean()

Result = Label = term()
NewRequestIdCollection = request id collection()

Check if a message is a response to a cal |l request corresponding to a request identifier saved in
Request | dCol | ecti on. All request identifiers of Request | dCol | ect i on must correspond to requests that
have been made using send_r equest/ 4 or send_r equest/ 6, and all requests must have been made by the
process calling this function.

Label isthe label associated with the request identifier of the request that the response corresponds to. A request
identifier is associated with alabel when adding arequest identifier in arequest identifier collection, or when sending
therequest using send_r equest / 6.

Compared to check_r esponse/ 2, the returned result associated with a specific request identifier or an exception
associated with aspecific request identifier will bewrapped in a3-tuple. Thefirst element of thistuple equalsthe value
that would have been produced by check_r esponse/ 2, the second element equals the Label associated with
the specific request identifier, and the third element NewRequest | dCol | ect i on isa possibly modified request
identifier collection. Theer r or exception{ er pc, badar g} isnot associated with any specific request identifier,
and will hence not be wrapped.

If Request | dCol | ecti on isempty, theatomno_r equest will bereturned. If Message does not correspond
to any of the request identifiersin Request | dCol | ect i on, theatomno_r esponse isreturned.

If Del et e equalst r ue, theassociation with Label will have been deleted from Request | dCol | ecti oninthe
resulting NewRequest | dCol | ecti on. If Del et e equals f al se, NewRequest | dCol | ect i on will equal
Request | dCol | ect i on. Note that deleting an association is not for free and that a collection containing already
handled requests can till be used by subsequent calls to check response/ 3, recei ve_r esponse/ 3, and
wai t _response/ 3. However, without del eting handled associations, the above callswill not be ableto detect when
there are no more outstanding requeststo handle, so you will haveto keep track of this some other way thanrelyingona
no_r equest return. Notethat if you pass acollection only containing associations of already handled or abandoned
requeststo check_response/ 3, it will dwaysreturnno_r esponse.

Notethat aresponse might have been consumed upponan{ er pc, badar g} exceptionandif so, will belost for ever.

multicall(Nodes, Fun) -> Result
multicall(Nodes, Fun, Timeout) -> Result
Types.

Nodes = [atom()]

Fun = function()

Timeout = timeout time()

Result = term()

Thesameascalinger pc: nul ti cal | (Nodes, erlang, apply, [Fun,[]], Timeout).Mayraisedl
thesameexceptionsasmul ti cal | / 5 plusan{ er pc, badar g} error exceptionif Funisnotafunof zero arity.

The call erpc:multicall (Nodes, Fun) is the same as the call erpc: multicall (Nodes, Fun,
infinity).

multicall(Nodes, Module, Function, Args) -> Result
multicall(Nodes, Module, Function, Args, Timeout) -> Result
Types:

Ericsson AB. All Rights Reserved.: Kernel | 119

erpc

Nodes = [atom()]

Module = Function = atom()
Args = [term()]

Timeout = timeout time()

Result =
[{ok, ReturnValue :: term()} | caught call exception()]
caught call exception() =
{throw, Throw :: term()} |
{exit, {exception, Reason :: term()}} |
{error,
{exception, Reason :: term(), StackTrace :: [stack item()]}} |
{exit, {signal, Reason :: term()}} |
{error, {erpc, Reason :: term()}}
stack item() =
{Module :: atom(),

Function :: atom(),
Arity :: arity() | (Args :: [term()]),
Location

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}

Performsmultiplecal | operationsin parallel on multiple nodes. That is, evaluatesappl y(Modul e, Functi on,
Ar gs) onthenodesNodes inparallel. Ti neout setsan upper timelimit for all cal | operationsto complete. The
result is returned as a list where the result from each node is placed at the same position as the node name is placed
in Nodes. Eachitemin theresulting list is formatted as either:

{ok, Result}
Thecal | operation for this specific node returned Resul t .
{C ass, ExceptionReason}

The cal | operation for this specific node raised an exception of class C ass with exception reason
Except i onReason. These correspond to the exceptionsthat cal | / 5 canraise.

mul ticall/5falswithan{erpc, badarg} error exceptionif:

* Nodes isnot aproper list of atoms. Note that some requests may already have been sent when the failure occurs.
That is, the function may or may not be applied on some nodes.

e Modul e isnot an atom.

e Functi on isnot an atom.

« Argsisnotalist. Notethat thelist is not verified to be a proper list at the client side.

The cdl erpc:nulticall (Nodes, Modul e, Functi on, Args) is equivdent to the call

erpc: mul ticall (Nodes, Mdule, Function, Args, infinity).Thesecalsarealsoequivaentto

calingmy_rmul tical | (Nodes, Modul e, Function, Args) belowif onedisregard performanceandfailure

behavior. mul ti cal | () can utilize a selective receive optimization which removes the need to scan the message

gueue from the beginning in order to find amatching message. Thesend_r equest () / recei ve_r esponse()
combination can, however, not utilize this optimization.

120 | Ericsson AB. All Rights Reserved.: Kernel

erpc

my multicall(Nodes, Module, Function, Args) ->
ReqIds = lists:map(fun (Node) ->
erpc:send request(Node, Module, Function, Args)
end,
Nodes),
lists:map(fun (ReqId) ->
try
{ok, erpc:receive response(ReqId, infinity)}
catch
Class:Reason ->
{Class, Reason}
end
end,
ReqlIds).

If aner pc operation fails, but it isunknown if the function is/will be applied (that is, atimeout, connection loss, or an
improper Nodes list), the caller will not receive any further information about the result if/when the applied function
completes. If the applied function communicates with the calling process, such communication may, of course, reach
the calling process.

Y ou cannot make any assumptions about the process that will perform theappl y () . It may bethe calling process
itself, aserver, or afreshly spawned process.

multicast(Nodes, Fun) -> ok
Types:
Nodes = [node()]
Fun = function()
Thesameascallinger pc: mul ti cast (Nodes, erl ang, apply, [Fun,[]]).
mul ti cast/ 2 falswithan{er pc, badarg} error exceptionif:

* Nodes isnot aproper list of atoms.
e Funisnotaafun of zero arity.

multicast(Nodes, Module, Function, Args) -> ok
Types:

Nodes = [node()]

Module = Function = atom()

Args = [term()]

Evaluates appl y(Modul e, Function, Args) on the nodes Nodes. No response is delivered to the calling
process.mul ti cast () returnsimmediately after the cast requests have been sent. Any failures beside bad arguments
are silently ignored.

nmul ti cast/ 4 falswithan{erpc, badarg} error exceptionif:

* Nodes isnot aproper list of atoms. Note that some reguests may already have been sent when the failure occurs.
That is, the function may or may not be applied on some nodes.

e Modul e isnot an atom.

e Functi on isnot an atom.

« Argsisnotalist. Notethat thelist is not verified to be a proper list at the client side.

Ericsson AB. All Rights Reserved.: Kernel | 121

erpc

You cannot make any assumptions about the process that will perform the appl y() . It may be a server, or a
freshly spawned process.

receive response(RequestId) -> Result
Types:

RequestId = request id()

Result = term()

Thesameascalinger pc: recei ve_response(Requestld, infinity).

receive response(RequestId, Timeout) -> Result
Types:

RequestId = request id()

Timeout = timeout time()

Result = term()

Receive a response to a cal | request previously made by the calling process using send_r equest/ 4.
Request | d should bethe value returned from the previously madesend_r equest / 4 call, and the corresponding
response should not already have been received and handled to completion by recei ve_response(),
check _response/ 4,orwait_response/ 4.

Ti meout setsan upper time limit on how long to wait for aresponse. If the operation times out, the request identified
by Request | d will be abandoned, then an { er pc, tineout} error exception will be raised. That is, no
response corresponding to the request will ever be received after a timeout. If a response is received, the cal |
operation is completed and either the result is returned or an exception is raised. The exceptions that can be raised
correspondsto the same exceptionsascanberaisedby cal | / 5.r ecei ve_r esponse/ 2 will fail withan{ er pc,
badar g} exception if/when aninvalid Request | d isdetected or if aninvalid Ti neout is passed.

A call tothefunctionmy_cal | (Node, Mbdul e, Function, Args, Tineout) below isequivalenttothe
cal erpc: cal | (Node, Mdule, Function, Args, Timeout) ifonedisregardsperformance. call ()
can utilize a selective receive optimization which removes the need to scan the message queue from the beginning in
order to find a matching message. Thesend_r equest () / recei ve_r esponse() combination can, however,
not utilize this optimization.

my call(Node, Module, Function, Args, Timeout) ->
RequestId = erpc:send request(Node, Module, Function, Args),
erpc:receive response(RequestId, Timeout).

If the er pc operation fails, but it is unknown if the function is'will be applied (that is, a timeout, or a connection
loss), the caller will not receive any further information about the result if/when the applied function completes. If
the applied function explicitly communicates with the calling process, such communication may, of course, reach the
calling process.

receive response(RequestIdCollection, Timeout, Delete) ->
{Result, Label, NewRequestIdCollection} |
no_request

Types.

122 | Ericsson AB. All Rights Reserved.: Kernel

erpc

RequestIdCollection = request id collection()
Timeout = timeout time()
Delete = boolean()

Result = Label = term()
NewRequestIdCollection = request id collection()

Receive a response to a cal | request corresponding to a request identifier saved in Request | dCol | ecti on.
All request identifiers of Request | dCol | ecti on must correspond to requests that have been made using
send_request/ 4 or send_request/ 6, and al requests must have been made by the process caling this
function.

Label isthe label associated with the request identifier of the request that the response corresponds to. A request
identifier is associated with alabel when adding arequest identifier in arequest identifier collection, or when sending
therequest using send_r equest / 6.

Comparedtor ecei ve_r esponse/ 2, thereturned result associated with aspecific request identifier or an exception
associated with aspecific request identifier will bewrapped in a3-tuple. Thefirst element of thistuple equalsthe value
that would have been produced by r ecei ve_r esponse/ 2, the second element equalsthe Label associated with
the specific request identifier, and the third element NewRequest | dCol | ect i on isa possibly modified request
identifier collection. Theer r or exceptions{ er pc, badarg} and{erpc, ti meout} arenot associated with
any specific request identifiers, and will hence not be wrapped.

If Request | dCol | ecti on isempty, theatom no_r equest will be returned.

If the operation times out, all requestsidentified by Request | dCol | ect i on will be abandoned, thenan{ er pc,
ti meout} error exceptionwill beraised. That is, no responses corresponding to any of the request identifiersin
Request | dCol | ect i on will ever bereceived after atimeout. The difference betweenr ecei ve_r esponse/ 3
andwai t _response/ 3 isthatrecei ve_response/ 3 abandons the requests at timeout so that any potential
future responses are ignored, whilewai t _r esponse/ 3 does not.

If Del et e equalst r ue, theassociation with Label will have been deleted from Request | dCol | ecti oninthe
resulting NewRequest | dCol | ecti on. If Del et e equals f al se, NewRequest | dCol | ect i on will equa
Request | dCol | ect i on. Note that deleting an association is not for free and that a collection containing already
handled requests can till be used by subsequent calls to r ecei ve_r esponse/ 3, check_response/ 3, and
wai t _response/ 3. However, without del eting handled associations, the above callswill not be ableto detect when
there are no more outstanding requeststo handle, so you will haveto keep track of this some other way thanrelyingona
no_r equest return. Notethat if you passacollection only containing associations of aready handled or abandoned
requeststor ecei ve_r esponse/ 3, it will always block until atimeout determined by Ti neout istriggered.

Notethat aresponse might have been consumed upponan{ er pc, badar g} exceptionandif so, will belost for ever.

reqids add(RequestId :: request id(),
Label :: term(),
RequestIdCollection :: request id collection()) ->
NewRequestIdCollection :: request id collection()

Saves Request|d and associates a Label with the request identifier by adding this information to
Request | dCol | ect i on and returning the resulting request identifier collection.

reqids new() -> NewRequestIdCollection :: request id collection()

Returns a new empty request identifier collection. A request identifier collection can be utilized in order the handle
multiple outstanding requests.

Request identifiers of requests made by send_request/ 4 can be saved in a request identifier collection
using r eqi ds_add/ 3. Such a collection of request identifiers can later be used in order to get one response

Ericsson AB. All Rights Reserved.: Kernel | 123

erpc

corresponding to a request in the collection by passing the collection as argument to check_r esponse/ 3,
recei ve_response/ 3,andwai t _response/ 3.

reqi ds_si ze/ 1 can be used to determine the amount of request identifiersin arequest identifier collection.

reqids size(RequestIdCollection :: request id collection()) ->
integer() >= 0

Returns the amount of request identifiers saved in Request | dCol | ecti on.

reqids to list(RequestIdCollection :: request id collection()) ->
[{RequestId :: request id(), Label :: term()}]

Returnsalist of { Request 1 d, Label } tuples which corresponds to all request identifiers with their associated
labels present in the Request | dCol | ect i on collection.

send request(Node, Fun) -> RequestId
Types:

Node = node()

Fun = function()

RequestId = request id()
Thesameascaling er pc: send_r equest (Node, erlang, apply, [Fun, []1]).
Fallswithan{er pc, badarg} error exceptionif:

* Node isnot an atom.
e Fun isnot afun of zero arity.

You cannot make any assumptions about the process that will perform the appl y() . It may be a server, or a
freshly spawned process.

send request(Node, Module, Function, Args) -> RequestId
Types:

Node = node()

Module = Function = atom()

Args = [term()]

RequestId = request id()

Send an asynchronous cal | request to the node Node. send_r equest / 4 returns a request identifier that later
is to be passed to either r ecei ve_response/ 2, wait _response/ 2, or, check_response/ 2 in order to
get the response of the call request. Besides passing the request identifier directly to these functions, it can aso be
added in a request identifier collection using r eqi ds_add/ 3. Such a collection of request identifiers can later be
used in order to get one response corresponding to a request in the collection by passing the collection as argument to
recei ve_response/ 3,wait_response/ 3, or,check_response/ 3. If you are about to save the request
identifier in arequest identifier collection, you may want to consider using send_r equest / 6 instead.

A call tothefunctionmy_cal | (Node, Mdul e, Function, Args, Tinmeout) below isequivalent tothe
cal erpc: cal | (Node, Mdule, Function, Args, Timeout) ifonedisregardsperformance. call ()
can utilize a selective receive optimization which removes the need to scan the message queue from the beginning in

124 | Ericsson AB. All Rights Reserved.: Kernel

erpc

order to find a matching message. Thesend_r equest () / recei ve_r esponse() combination can, however,
not utilize this optimization.

my call(Node, Module, Function, Args, Timeout) ->
RequestId = erpc:send request(Node, Module, Function, Args),
erpc:receive response(RequestId, Timeout).

Fallswithan{er pc, badarg} error exceptionif:

* Node isnot an atom.

e Modul e isnot an atom.

e Functi on isnot an atom.

« Argsisnotalist. Notethat thelist is not verified to be a proper list at the client side.

You cannot make any assumptions about the process that will perform the appl y() . It may be a server, or a
freshly spawned process.

send request(Node, Fun, Label, RequestIdCollection) ->
NewRequestIdCollection

Types:
Node = node()
Fun = function()
Label = term()
RequestIdCollection = NewRequestIdCollection = request id collection()

The same as calling er pc: send_r equest (Node, erl ang, apply, [Fun,[11), Label ,
Request | dCol | ecti on).

Falswithan{ er pc, badarg} error exceptionif:

* Node isnot an atom.

* Funisnot afun of zero arity.

 Request | dCol | ecti on isdetected not to be request identifier collection.

You cannot make any assumptions about the process that will perform the appl y() . It may be a server, or a
freshly spawned process.

send request(Node, Module, Function, Args, Label,
RequestIdCollection) ->
NewRequestIdCollection

Types:

Ericsson AB. All Rights Reserved.: Kernel | 125

erpc

Node = node()

Module = Function = atom()
Args = [term()]

Label = term()
RequestIdCollection = NewRequestIdCollection = request id collection()

Send an asynchronous cal | request to the node Node. The Label will be associated with the request identifier of
the operation and added to the returned request identifier collection NewRequest | dCol | ect i on. The collection
can later be used in order to get one response corresponding to a request in the collection by passing the collection as
argumenttor ecei ve_r esponse/ 3,wai t _response/ 3, or,check_response/ 3.

Thesameascaling er pc: reqi ds_add(er pc: send_r equest (Node, Mdul e, Function, Args),
Label , Request|dCol | ection),butcalingsend_r equest/ 6 isslightly more efficient.

Faillswithan{er pc, badarg} error exceptionif:

* Node isnot an atom.

* Modul e isnot an atom.

 Functi onisnot an atom.

« Argsisnotalist. Notethat thelist is not verified to be a proper list at the client side.
* Request1dCol I ecti on isdetected not to be request identifier collection.

You cannot make any assumptions about the process that will perform the appl y() . It may be a server, or a
freshly spawned process.

wait response(RequestId) -> {response, Result} | no_response
Types:

RequestId = request id()

Result = term()

Thesameascalinger pc: wai t _response(Request|d, 0).Thatis, poll for aresponse messagetoacal |
request previously made by the calling process.

wait response(RequestId, WaitTime) ->
{response, Result} | no response
Types:
RequestId = request id()
WaitTime = timeout time()
Result = term()

Wait or poll for a response message to a cal | request previousdy made by the calling process using
send_request/ 4. Request | d should be the value returned from the previously made send_r equest ()
cal, and the corresponding response should not already have been received and handled to completion by
check_response/ 2,recei ve_response/ 2,orwai t _response().

Wai t Ti ne sets an upper time limit on how long to wait for a response. If no response is received before the
Wai t Ti me timeout has triggered, the atom no_r esponse is returned. It is valid to continue waiting for a
response as many times as needed up until a response has been received and completed by check_r esponse(),
recei ve_response(),orwai t _response().If aresponseisreceived, thecal | operation is completed and
either theresult isreturned as{ r esponse, Resul t} whereRResul t corresponds to the value returned from the

126 | Ericsson AB. All Rights Reserved.: Kernel

erpc

applied function or an exception israised. The exceptions that can be raised corresponds to the same exceptions as can
beraisedby cal | / 4. Thatis,no{erpc, tinmeout} error exceptioncanberaised. wai t _response/ 2 will
faill withan{ er pc, badar g} exception if/when aninvalid Request | d is detected or if an invalid Wi t Ti e
is passed.

If the er pc operation fails, but it is unknown if the function is'will be applied (that is, a too large wait time value,
or a connection loss), the caller will not receive any further information about the result if/when the applied function
completes. If the applied function explicitly communicates with the calling process, such communication may, of
course, reach the calling process.

wait response(RequestIdCollection, WaitTime, Delete) ->
{{response, Result},
Label, NewRequestIdCollection} |
no _response | no request

Types:
RequestIdCollection = request id collection()
WaitTime = timeout time()
Delete = boolean()
Label = term()
NewRequestIdCollection = request id collection()
Result = term()

Wait or poll for a response to a call request corresponding to a request identifier saved in
Request | dCol | ecti on. All request identifiers of Request | dCol | ect i on must correspond to requests that
have been made using send_r equest/ 4 or send_r equest/ 6, and al requests must have been made by the
process calling this function.

Label isthe label associated with the request identifier of the request that the response corresponds to. A request
identifier is associated with alabel when adding arequest identifier in arequest identifier collection, or when sending
therequest using send_r equest / 6.

Compared towai t _r esponse/ 2, the returned result associated with a specific request identifier or an exception
associated with a specific request identifier will be wrapped in a 3-tuple. The first element of this tuple equals the
value that would have been produced by wai t _r esponse/ 2, the second element equalsthe Label associated with
the specific request identifier, and the third element NewRequest | dCol | ect i on isa possibly modified request
identifier collection. Theer r or exception{ er pc, badar g} isnot associated with any specific request identifier,
and will hence not be wrapped.

If Request | dCol | ection is empty, no_request will be returned. If no response is received before the
Wi t Ti ne timeout has triggered, the atom no_r esponse is returned. It is valid to continue waiting for a
response as many times as needed up until a response has been received and completed by check _r esponse(),
recei ve_response(), or wait_response(). The difference between recei ve_response/ 3 and
wai t _response/ 3 isthat r ecei ve_response/ 3 abandons requests at timeout so that any potential future
responses are ignored, whilewai t _r esponse/ 3 does not.

If Del et e equals t r ue, the association with Label will have been deleted from Request | dCol | ecti on
in the resulting NewRequest | dCol | ecti on. If Del et e equals f al se, NewRequest | dCol | ecti on will
equal Request | dCol | ecti on. Note that deleting an association is not for free and that a collection containing
already handled requests can still be used by subsequent callstowai t _r esponse/ 3,check_response/ 3, and
recei ve_r esponse/ 3. However, without deleting handled associations, the above callswill not be able to detect
when there are no more outstanding requests to handle, so you will have to keep track of this some other way than
relyingonano_r equest return. Note that if you pass a collection only containing associations of aready handled
or abandoned requests to wai t _r esponse/ 3, it will always block until a timeout determined by Wi t Ti ne is
triggered and then return no_r esponse.

Ericsson AB. All Rights Reserved.: Kernel | 127

erpc

Notethat aresponse might have been consumed upponan{ er pc, badar g} exceptionandif so, will belost for ever.

128 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

error_handler

Erlang module

This module defines what happens when certain types of errors occur.

Exports

raise undef exception(Module, Function, Args) -> no_return()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN

Raisesan undef exception with a stacktrace, indicating that Modul e: Funct i on/ Nisundefined.

undefined function(Module, Function, Args) -> any()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN
This function is called by the runtime system if a call is made to Modul e: Functi on(Argl,.., ArgN) and
Modul e: Funct i on/ Nisundefined. Noticethat thisfunctionisevaluated insidethe processmaking theorigina call.
This function first attempts to autoload Modul e. If that is not possible, an undef exceptionis raised.
If it is possible to load Modul e and function Funct i on/ Nisexported, it is called.

Otherwise, if function ' $handl e _undefined function'/2 is exported, it is «caled as
" $handl e_undefi ned_functi on' (Function, Args).

Defining' $handl e_undefi ned_f uncti on'/ 2 inordinary application codeishighly discouraged. Itisvery
easy to make subtle errorsthat can take along time to debug. Furthermore, none of thetoolsfor static code analysis
(such as Dialyzer and Xref) supportsthe use of ' $handl e_undef i ned_f uncti on' / 2 and no such support
will beadded. Only usethisfunction after having carefully considered other, less dangerous, solutions. Oneexample
of potential legitimate useis creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception israised.

undefined lambda(Module, Fun, Args) -> term()
Types:

Module = atom()

Fun = function()

Args = list()

A (possibly empty) list of argumentsAr g1, . ., ArgN

This function is evaluated if acall ismadeto Fun(Argl, .., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

Ericsson AB. All Rights Reserved.: Kernel | 129

error_handler

If Modul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Fun(Argl, . ., ArgN)
cal isreturned.

Otherwise, it returns, if possible, the value of appl y(Fun, Ar gs) after an attempt is made to autoload Mbdul e.
If thisis not possible, the call fails with exit reason undef .

Notes

Thecodeinerror _handl er iscomplex. Do not changeit without fully understanding the interaction between the
error handler, thei ni t process of the code server, and the 1/0O mechanism of the code.

Code changes that seem small can cause a deadlock, as unforeseen consequences can occur. The use of i nput is
dangerousin thistype of code.

130 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

error_logger

Erlang module

In Erlang/OTP 21.0, a new API for logging was added. The old er r or _| ogger module can still be used by
legacy code, but log events are redirected to the new Logger API. New code should use the Logger API directly.

error _| ogger isno longer started by default, but is automatically started when an event handler is added with
error _| ogger:add_report_handl er/ 1, 2. Theerror_I| ogger moduleisthen also added asahandler
to the new logger.

Seel ogger (3) and the Logging chapter in the User's Guide for more information.

The Erlang error logger is an event manager (see OTP Design Principles and gen_event (3)), registered as
error_| ogger.

Error logger is no longer started by default, but is automatically started when an event handler is added with
add_report_handl er/ 1, 2. Theerror | ogger module is then also added as a handler to the new logger,
causing log events to be forwarded from logger to error logger, and consequently to all installed error logger event
handlers.

User-defined event handlers can be added to handl e application-specific events.
Existing event handlers provided by STDLIB and SASL are still available, but are no longer used by OTP.

Warning events were introduced in Erlang/OTP R9C and are enabled by default as from Erlang/OTP 18.0. To retain
backwards compatibility with existing user-defined event handlers, the warning events can be tagged aser r or s or
i nf o using command-line flag +W <e | i | w>, thusshowing up as ERROR REPORT or | NFO REPORT
inthelogs.

Data Types

report() =
[{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

add report handler(Handler) -> any()
add report handler(Handler, Args) -> Result
Types.

Handler = module()

Args = gen event:handler args()

Result = gen event:add handler ret()

Adds a new event handler to the error logger. The event handler must be implemented as agen_event callback
module, seegen_event (3).

Handl er istypically the name of the callback module and Ar gs is an optional term (defaults to []) passed to the
initialization callback function Handl er : i ni t / 1. The function returns ok if successful.

The event handler must be able to handle the events in this module, see section Events.

Ericsson AB. All Rights Reserved.: Kernel | 131

error_logger

Thefirst timethisfunctioniscalled, er r or _| ogger isadded asal ogger handler, andtheer r or _| ogger process
is started.

delete report handler(Handler) -> Result
Types:

Handler = module()

Result = gen _event:del handler ret()

Deletes an event handler from the error logger by caling gen_event : del et e_handl er (error _| ogger,
Handl er, []),seegen_event(3).

If no more event handlers exist after the deletion, error | ogger is removed as a Logger handler, and the
error _| ogger processis stopped.

error_msg(Format) -> ok
error _msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:
Format = string()
Data = list()
Log a standard error event. The For mat and Dat a arguments are the same as the arguments of i o: f or mat / 2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

The event is handled by the default Logger handler.

These functions are kept for backwards compatibility and must not be used by new code. Usethe ?LOG_ERROR macro
orl ogger:error/ 1,2, 3instead.

Example:

1> error_logger:error _msg("An error occurred in ~p", [a _module]).
=ERROR REPORT==== 22-May-2018::11:18:43.376917 ===

An error occurred in a _module

ok

If the Unicode trandlation modifier (t) isused in theformat string, all event handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

error_report(Report) -> ok
Types:
Report = report()

Log a standard error event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler.

132 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Thisfunctionsis kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR macro
orl ogger:error/1, 2, 3instead.

Example:

2> error_logger:error_report([{tagl,datal},a term,{tag2,data}]).

=ERROR REPORT==== 22-May-2018::11:24:23.699306 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 22-May-2018::11:24:45.972445 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:
Type = term()
Report = report()
Log a user-defined error event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

Error logger also addsadomai n field with value[Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

It isrecommended that Repor t followsthe same structureasforerr or _report/ 1.

Thisfunctionsis kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR macro
orl ogger:error/ 1,2, 3instead.

get format depth() -> unlimited | integer() >=1

Returns max(10, Dept h), where Dept h is the value of error _| ogger _f ormat _dept h in the Kernel
application, if Depthis an integer. Otherwise, unl i m t ed isreturned.

Theerror | ogger _format dept h variable is deprecated since the Logger APl was introduced in Erlang/
OTP 21.0. The variable, and this function, are kept for backwards compatibility since they still might be used by
legacy report handlers.

info msg(Format) -> ok
info msg(Format, Data) -> ok
Types:

Format = string()

Data = list()

Logastandard information event. TheFor mat and Dat a argumentsarethe sameastheargumentsofi o: f or mat / 2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

Ericsson AB. All Rights Reserved.: Kernel | 133

error_logger

The event is handled by the default Logger handler.

These functions are kept for backwards compatibility and must not be used by new code. Usethe ?LOG_| NFOmacro
orl ogger:info/1, 2, 3instead.

Example:

1> error_logger:info msg("Something happened in ~p", [a module]).
=INFO REPORT==== 22-May-2018::12:03:32.612462 ===

Something happened in a module

ok

If the Unicode translation modifier (t) isused in theformat string, all event handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

info report(Report) -> ok
Types:
Report = report()
Log astandard information event. Error logger forwardsthe event to Logger, including metadatathat allows backwards
compatibility with legacy error logger event handlers.
The event is handled by the default Logger handler.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_| NFO macro
orl ogger:info/1l, 2, 3instead.

Example:

2> error_logger:info report([{tagl,datal},a term,{tag2,data}]).
=INFO REPORT==== 22-May-2018::12:06:35.994440 ===
tagl: datal
a_term
tag2: data
ok
3> error _logger:info report("Something strange happened").
=INFO REPORT==== 22-May-2018::12:06:49.066872 ===
Something strange happened
ok

info report(Type, Report) -> ok
Types:
Type = any()
Report = report()
Log a user-defined information event. Error logger forwards the event to Logger, including metadata that allows
backwards compatibility with legacy error logger event handlers.

Error logger aso addsadomai n field with value [Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

Itis recommended that Repor t follows the same structure asfori nf o_report/ 1.

134 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_| NFO macro
orl ogger:info/1, 2, 3instead.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types:

Filename = file:name()

OpenReason = allready have logfile | open error()

CloseReason = module not found

FilenameReason = no log file

open error() = file:posix() | badarg | system limit
Enables or disables printout of standard eventsto afile.

This is done by adding or deleting the error | ogger _fil e _h event handler, and thus indirectly adding
error _| ogger asalogger handler.

Notice that this function does not manipulate the Logger configuration directly, meaning that if the default Logger
handler is already logging to afile, this function can potentially cause logging to a second file.

This function is useful as a shortcut during development and testing, but must not be used in a production system.
See section Logging in the Kernel User's Guide, and the | ogger (3) manual page for information about how to
configure Logger for live systems.

Request isone of the following:
{open, Fil enane}

OpenslogfileFi | ename. Returnsok if successful,or{error, allready_have_| ogfil e} ifloggingto
fileisalready enabled, or an error tupleif another error occurred (for example, if Fi | enanme cannot be opened).
Thefileis opened with encoding UTF-8.

cl ose
Closes the current log file. Returns ok, or { error, nodul e_not _found}.
fil enane

Returnsthe name of thelog fileFi | ename, or{error, no_l og fil e} if loggingtofileisnot enabled.

tty(Flag) -> ok
Types:
Flag = boolean()
Enables (FI ag == true) ordisables(Fl ag == f al se) printout of standard events to the terminal.

This is done by manipulating the Logger configuration. The function is useful as a shortcut during development
and testing, but must not be used in a production system. See section Logging in the Kernel User's Guide, and the
| ogger (3) manual page for information about how to configure Logger for live systems.

warning map() -> Tag
Types:

Ericsson AB. All Rights Reserved.: Kernel | 135

error_logger

Tag = error | warning | info

Returns the current mapping for warning events. Events sent using warning _nsg/1,2 or
war ni ng_report/ 1, 2 aretagged as errors, warnings (default), or info, depending on the value of command-line
flag +W

Example:

os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error_logger:warning map().

warning

2> error_logger:warning msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
--> q
0s$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error_logger:warning map().

error

2> error_logger:warning msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

warning msg(Format) -> ok
warning msg(Format, Data) -> ok
Types.

Format = string()

Data = list()

Log a standard warning event. The For mat and Dat a arguments are the same asthe argumentsof i o: f or mat / 2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

The event is handled by the default Logger handler. The log level can be changed to error or info, see
war ni ng_nmap/ 0.

These functions are kept for backwards compatibility and must not be used by new code. Use the 7LOG_WARNI NG
macro or | ogger : war ni ng/ 1, 2, 3 instead.

If the Unicode trandlation modifier (t) isused in theformat string, all event handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

136 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

warning report(Report) -> ok
Types.
Report = report()

Log a standard warning event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler. The log level can be changed to error or info, see
war ni ng_nap/ 0.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNI NG
macro or | ogger : war ni ng/ 1, 2, 3 instead.

warning report(Type, Report) -> ok
Types:

Type = any()

Report = report()

L og auser-defined warning event. Error logger forwardsthe event to L ogger, including metadatathat allows backwards
compatibility with legacy error logger event handlers.

Error logger also addsadomai n field with value [Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

Thelog level can be changed to error or info, seewar ni ng_map/ 0.
It isrecommended that Report follows the same structure asfor war ni ng_report/ 1.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNI NG
macro or | ogger : war ni ng/ 1, 2, 3 instead.

Events

All event handlers added to the error logger must handle the following events. G eader isthe group leader pid of
the process that sent the event, and Pi d isthe process that sent the event.

{error, deader, {Pid, Format, Data}}

Generated whenerror _nsg/ 1, 2 or f or mat iscaled.
{error _report, deader, {Pid, std error, Report}}

Generated whenerror _report/ 1iscalled.
{error _report, deader, {Pid, Type, Report}}

Generated whener r or _report/ 2 iscalled.
{warni ng_nmsg, d eader, {Pid, Format, Data}}

Generated whenwar ni ng_nsg/ 1, 2 iscalled if warnings are set to be tagged as warnings.
{warning_report, deader, {Pid, std warning, Report}}

Generated whenwar ni ng_r eport/ 1 iscalled if warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, Type, Report}}

Generated when war ni ng_r eport/ 2 iscalled if warnings are set to be tagged as warnings.
{info_nsg, d eader, {Pid, Format, Data}}

Generated wheni nfo_nsg/ 1, 2 iscalled.

Ericsson AB. All Rights Reserved.: Kernel | 137

error_logger

{info_report, deader, {Pid, std_info, Report}}
Generated wheni nf o_r eport/ 1iscalled.

{info_report, deader, {Pid, Type, Report}}
Generated wheni nf o_r eport/ 2 iscalled.

Notice that some system-internal events can aso be received. Therefore a catch-al clause last in the definition
of the event handler callback function Modul e: handl e_event/2 is necessary. This aso applies for
Modul e: handl e_i nf o/ 2, asthe event handler must also take care of some system-internal messages.

See Also
gen_event (3),1 ogger (3),l og_nf_h(3),kernel (6),sasl (6)

138 | Ericsson AB. All Rights Reserved.: Kernel

file

file

Erlang module

This module provides an interface to the file system.

File operations are only guaranteed to appear atomic when going through the same file server. A NIF or other OS
process may observe intermediate steps on certain operations on some operating systems, eg. renaming an existing
fileon Windows, orwrite_fil e_i nf o/ 2 onany OSat the time of writing.

Regarding filename encoding, the Erlang VM can operate in two modes. The current mode can be queried using
functionnat i ve_name_encodi ng/ 0. Itreturns| ati nl or ut f 8.

Inl at i n1 mode, the Erlang VM does not change the encoding of filenames. In ut f 8 mode, filenames can contain
Unicode characters greater than 255 and the VM converts filenames back and forth to the native filename encoding
(usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows, MacOS X and Android enforce consistent filename
encoding and therefore the VM uses ut f 8 mode.

On operating systems with transparent naming (for example, all Unix systems except MacOS X), default isut f 8 if
theterminal supportsUTF-8, otherwisel at i n1. Thedefault can be overridden using +f nl (toforcel at i n1 mode)
or +f nu (to force ut f 8 mode) when starting er | .

On operating systems with transparent naming, files can be inconsistently named, for example, somefiles are encoded
in UTF-8 while others are encoded in I SO Latin-1. The concept of raw filenamesisintroduced to handlefile systems
with inconsistent naming when running in ut f 8 mode.

A raw filenameisafilename specified asabinary. The Erlang VM does not translate a filename specified as a binary
on systems with transparent naming.

When running in ut f 8 mode, functions| i st _dir/ 1 andread_| i nk/ 1 never return raw filenames. To return
all filenamesincluding raw filenames, use functionsl i st _dir_all/landread |ink_all/1.

See also section Notes About Raw Filenamesin the STDLIB User's Guide.

File operations used to accept filenames containing null characters (integer value zero). This caused the nameto be
truncated and in some cases argumentsto primitive operationsto be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations fail.

Data Types

deep_list() = [char() | atom() | deep_list()]
fd()

A file descriptor representing afile opened in r aw mode.
filename() = string()

See also the documentation of thenane_al | () type.
filename all() = string() | binary()
See a'so the documentation of thename_al | () type.

Ericsson AB. All Rights Reserved.: Kernel | 139

file

io device() = pid() | fd()
Asreturned by open/ 2; pi d() isaprocess handling I/O-protocols.
name() = string() | atom() | deep list()

If VM isin Unicode filename mode, st ri ng() and char () are alowed to be > 255. See also the documentation
of thenane_al | () type.

name all() =
string() | atom() | deep list() | (RawFilename :: binary())

If VM isin Unicode filename mode, characters are allowed to be > 255. Rawi | enane is afilename not subject to
Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding expected from
thefile system (that is, non-UTF-8 characters although the VM is started in Unicode filename mode). Null characters
(integer value zero) are not alowed in filenames (not even at the end).

posix() =
eacces | eagain | ebadf | ebadmsg | ebusy | edeadlk |
edeadlock | edquot | eexist | efault | efbig | eftype |
eintr | einval | eio | eisdir | eloop | emfile | emlink |
emultihop | enametoolong | enfile | enobufs | enodev |
enolck | enolink | enoent | enomem | enospc | enosr | enostr |
enosys | enotblk | enotdir | enotsup | enxio | eopnotsupp |
eoverflow | eperm | epipe | erange | erofs | espipe | esrch |
estale | etxtbsy | exdev

An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
date time() = calendar:datetime()
Must denote avalid date and time.

file info() =
#file info{size = integer() >= 0 | undefined,
type =
device | directory | other | regular |
symlink | undefined,
access =
read | write | read write | none | undefined,
atime =
file:date t1me() |
integer() >= 0 |
undefined,
mtime =
file:date t1me() |
integer() >= 0 |
undefined,
ctime =
file:date t1me() |
integer() >= 0 |
undefined,
mode = integer() >= 0 | undefined,
links = integer() >= 0 | undefined,
major device = integer() >= 0 | undefined,
minor device = integer() >= 0 | undefined,
inode = integer() >= 0 | undefined,
uid = integer() >= 0 | undefined,

140 | Ericsson AB. All Rights Reserved.: Kernel

file

gid = integer() >= 0 | undefined}
location() =
integer() |
{bof, Offset :: integer()} |
{cur, Offset :: integer()} |
{eof, Offset :: integer()} |
bof | cur | eof
mode () =
read | write | append | exclusive | raw | binary |
{delayed write,
Size :: integer() >= 0,
Delay :: integer() >= 0} |
delayed write |
{read ahead, Size :: integer() >= 1} |
read ahead | compressed | compressed one |
{encoding, unicode:encoding()} |
sync
file info option() =
{time, local} | {time, universal} | {time, posix} | raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:
IoDevice = io device()

Offset = Length = integer()
Advise = posix file advise()
Reason = posix() | badarg

posix file advise() =
normal | sequential | random | no reuse | will need |
dont need

advi se/ 4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:
File = io device()
Offset = Length = integer() >= 0
al | ocat e/ 3 can be used to preallocate space for afile.
This function only succeeds in platformsthat provide this feature.

change group(Filename, Gid) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 141

file

Filename = name all()
Gid = integer()
Reason = posix() | badarg
Changes group of afile. Seewite_file_info/2.

change mode(Filename, Mode) -> ok | {error, Reason}
Types.

Filename = name all()

Mode = integer()

Reason = posix() | badarg
Changes permissions of afile. Seewrite file_info/ 2.

change owner(Filename, Uid) -> ok | {error, Reason}
Types.

Filename = name all()

Uid = integer()

Reason = posix() | badarg
Changes owner of afile. Seewite_file_infol2.

change owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types:

Filename = name all()

Uid = Gid = integer()

Reason = posix() | badarg
Changes owner and group of afile. Seewrite file_ info/2.

change time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = name all()

Mtime = date time()

Reason = posix() | badarg
Changes the modification and accesstimes of afile. Seewrite_fil e_i nfo/ 2.

change time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = name all()

Atime = Mtime = date time()

Reason = posix() | badarg

Changes the modification and last accesstimes of afile. Seewrite fil e_info/ 2.

close(IoDevice) -> ok | {error, Reason}
Types:

142 | Ericsson AB. All Rights Reserved.: Kernel

file

IoDevice = io device()
Reason = posix() | badarg | terminated
Closesthefilereferenced by | oDevi ce. It mostly returns ok, except for some severe errors such as out of memory.

Notice that if option del ayed_wr i t e was used when opening thefile, cl ose/ 1 can return an old write error and
not even try to close thefile. Seeopen/ 2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = name_ all()

Terms = [term()]

Reason =
posix() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by ".", from Fi | enane. Returns one of the following:
{ok, Terns}
The file was successfully read.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang termsin the file. To convert the three-element tuple to an English
description of the error, usef or mat _error/ 1.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
{ok, [{person, "kalle", 25}, {person, "pelle",30}]}

The encoding of Fi | enane can be set by acomment, as described in epp(3) .

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}

copy(Source, Destination, ByteCount) ->
{ok, BytesCopied} | {error, Reason}

Types:
Source = Destination = io device() | Filename | {Filename, Modes}
Filename = name all()
Modes = [mode()]
ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0
Reason = posix() | badarg | terminated

CopiesByt eCount bytesfrom Sour ce toDest i nati on. Sour ce andDest i nat i on refer to either filenames
or 10 devicesfrom, for example, open/ 2. Byt eCount defaultstoi nf i ni t y, denoting an infinite number of bytes.

Ericsson AB. All Rights Reserved.: Kernel | 143

file

Argument Modes isalist of possible modes, see open/ 2, and defaultsto[] .

If both Sour ce and Dest i nat i on refer to filenames, thefilesare opened with[r ead, bi nary] and[write,
bi nary] prepended to their mode lists, respectively, to optimize the copy.

If Sour ce refersto afilename, it is opened with r ead mode prepended to the mode list before the copy, and closed
when done.

If Desti nati on refersto afilename, it is opened with wr i t e mode prepended to the mode list before the copy,
and closed when done.

Returns{ ok, Byt esCopi ed}, where Byt esCopi ed isthe number of bytes that was copied, which can be less
than Byt eCount if end of filewas encountered onthesource. If the operationfails, { er r or, Reason} isreturned.

Typical error reasons; asfor open/ 2 if afile had to be opened, and asforr ead/ 2 andwr i t e/ 2.

datasync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io device()

Reason = posix() | badarg | terminated

Ensuresthat any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In many
ways it resemblesf sync but it does not update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

Applications that access databases or log files often write atiny data fragment (for example, onelinein alogfile) and
then call f sync() immediately to ensure that the written data is physically stored on the hard disk. Unfortunately,
fsync() aways initiates two write operations: one for the newly written data and another one to update the
modificationtimestoredinthei node. If themodificationtimeisnot apart of thetransaction concept, f dat async()
can be used to avoid unnecessary i node disk write operations.

Availableonly insome POSIX systems, thiscall resultsinacall tof sync() , or hasno effect in systemsnot providing
thef dat async() syscal.

del dir(Dir) -> ok | {error, Reason}
Types:
Dir = name all()
Reason = posix() | badarg
Triesto delete directory Di r . The directory must be empty before it can be deleted. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directoriesof Di r .
eexi st
The directory is not empty.
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.
ei nval
Attempt to delete the current directory. On some platforms, eacces isreturned instead.

144 | Ericsson AB. All Rights Reserved.: Kernel

file

del dir r(File) -> ok | {error, Reason}
Types:
File = name_all()
Reason = posix() | badarg
Deletesfile or directory Fi | e. If Fi | e isadirectory, its contentsis first recursively deleted. Returns:
ok
The operation completed without errors.
{error, posix()}

An error occurred when accessing or deleting Fi | e. If somefile or directory under Fi | e could not be deleted,
Fi | e cannot be deleted asit isnon-empty, and{ error, eexi st} isreturned.

delete(Filename) -> ok | {error, Reason}
delete(Filename, Opts) -> ok | {error, Reason}
Types:

Filename = name all()

Opts = [delete option()]

Reason = posix() | badarg

delete option() = raw

Triesto deletefile Fi | enane. Returns ok if successful.

If the option r awis set, the file server is not called. This can be useful in particular during the early boot stage when
thefile server is not yet registered, to still be able to delete locdl files.

Typical error reasons:
enoent
Thefile does not exist.
eacces
Missing permission for the file or one of its parents.
eperm
Thefileisadirectory and the user is not superuser.
enotdir
A component of the filename is not adirectory. On some platforms, enoent isreturned instead.

ei nval

Fi | ename has an improper type, such astuple.

In afuture release, abad type for argument Fi | enamne will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:

Filename = name all()

Reason =

Ericsson AB. All Rights Reserved.: Kernel | 145

file

posix() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by "' (or ',', a sequence of expressionsis also an expression) from
Fi | ename. Theresult of the evaluation is not returned; any expression sequence in the file must be there for its side
effect. Returns one of the following:

ok

The file was read and evaluated.
{error, atom)}

An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, usef or mat _error/ 1.

The encoding of Fi | ename can be set by acomment, as described in epp(3) .

eval(Filename, Bindings) -> ok | {error, Reason}

Types.
Filename = name all()
Bindings = erl eval:binding struct()
Reason =

posix() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

The same as eval / 1, but the variable bindings Bi ndi ngs are used in the evaluation. For information about the
variable bindings, seeer| _eval (3).

format _error(Reason) -> Chars
Types.
Reason =
posix() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Chars = string()
Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get cwd() -> {ok, Dir} | {error, Reason}
Types:

Dir = filename()

Reason = posix()

Returns{ ok, Dir},whereDi r isthe current working directory of the file server.

146 | Ericsson AB. All Rights Reserved.: Kernel

file

In rare circumstances, this function can fail on Unix. It can occur if read permission does not exist for the parent
directories of the current directory.

A typical error reason:
eacces

Missing read permission for one of the parents of the current directory.

get cwd(Drive) -> {ok, Dir} | {error, Reason}
Types.

Drive = string()

Dir = filename()

Reason = posix() | badarg

Returns{ok, Dir} or{error, Reason},whereDi r isthecurrent working directory of the specified drive.
Dri ve istobeof theform"Let t er: ", for example, "c:".
Returns{error, enotsup} on platforms that have no concept of current drive (Unix, for example).
Typical error reasons:
enot sup
The operating system has no concept of drives.
eacces
The drive does not exist.
ei nval
Theformat of Dri ve isinvalid.

list dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name all()

Filenames = [filename()]

Reason =
posix() |
badarg |
{no_translation, Filename :: unicode:latinl binary()}

Lists al filesin a directory, except files with raw filenames. Returns{ ok, Fi | enames} if successful, otherwise
{error, Reason}.Fil enanes isalist of the names of al the filesin the directory. The names are not sorted.

Typical error reasons:
eacces

Missing search or write permissionsfor Di r or one of its parent directories.
enoent

The directory does not exist.

Ericsson AB. All Rights Reserved.: Kernel | 147

file

{no_transl ation, Filenane}

Fi | enameisabi nar y() withcharacterscodedinlSO Latin-1 and the VM was started with parameter +f nue.

list dir all(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name all()

Filenames = [filename all()]

Reason = posix() | badarg

Lists all the files in a directory, including files with raw filenames. Returns { ok, Fi | enames} if successful,
otherwise {error, Reason}.Fil enanes isalist of the names of all the files in the directory. The names are
not sorted.

Typical error reasons:
eacces

Missing search or write permissionsfor Di r or one of its parent directories.
enoent

The directory does not exist.

make dir(Dir) -> ok | {error, Reason}
Types:
Dir = name all()
Reason = posix() | badarg
Triesto create directory Di r . Missing parent directories are not created. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directories of Di r .
eexi st
A fileor directory named Di r exists already.
enoent
A component of Di r does not exist.
enospc
No spaceisleft on the device.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

make link(Existing, New) -> ok | {error, Reason}
Types:
Existing = New = name all()
Reason = posix() | badarg
Makes a hard link from Exi sti ng to New on platforms supporting links (Unix and Windows). This function

returns ok if the link was successfully created, otherwise{error, Reason}. On platforms not supporting links,
{error, enot sup} isreturned.

148 | Ericsson AB. All Rights Reserved.: Kernel

file

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Hard links are not supported on this platform.

make symlink(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name all()

Reason = posix() | badarg

Creates a symbolic link Newto the file or directory Exi st i ng on platforms supporting symbolic links (most Unix
systems and Windows, beginning with Vista). Exi st i ng doesnot need to exist. Returnsok if thelink is successfully
created, otherwise { error, Reason}. On platforms not supporting symbolic links, { error, enot sup} is
returned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Symbolic links are not supported on this platform.
eperm

User does not have privilegesto create symbolic links (SeCr eat eSynbol i cLi nkPri vi | ege onWindows).

native name_encoding() -> latinl | utf8

Returnsthe filename encoding mode. If itisl at i n1, the system trandates no filenames. If itisut f 8, filenames are
converted back and forth to the native filename encoding (usually UTF-8, but UTF-16 on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:
File = Filename | iodata()
Filename = name_ all()
Modes = [mode() | ram | directory]
IoDevice = io device()
Reason = posix() | badarg | system limit
OpensfileFi | e in the mode determined by Mbdes, which can contain one or more of the following options:
read

Thefile, which must exist, is opened for reading.

Ericsson AB. All Rights Reserved.: Kernel | 149

file

wite

Thefileis opened for writing. It is created if it does not exist. If the file existsand wr i t e isnot combined with
r ead, thefileistruncated.

append

Thefileisopened for writing. It iscreated if it does not exist. Every write operation to afile opened withappend
takes place at the end of thefile.

excl usi ve
Thefileisopened for writing. It iscreated if it does not exist. If thefileexists, { error, eexi st} isreturned.

War ning:

This option does not guarantee exclusiveness on file systems not supporting O_EXCL properly, such as NFS.
Do not depend on this option unless you know that the file system supports it (in general, local file systems
are safe).

raw

Allows faster access to afile, as no Erlang process is needed to handle the file. However, a file opened in this
way has the following limitations:

e The functionsin the i 0 module cannot be used, as they can only talk to an Erlang process. Instead, use
functionsread/ 2,read _line/1,andwite/?2.

e Especidly if read_I| i ne/ 1 isto be used on ar awfile, it is recommended to combine this option with
option{read_ahead, Si ze} asline-oriented 1/O isinefficient without buffering.

e Only the Erlang process that opened the file can useit.

« A remote Erlang file server cannot be used. The computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

bi nary
Read operations on the file return binaries rather than lists.
{del ayed_wite, Size, Del ay}

Datain subsequent wr i t e/ 2 callsisbuffered until at least Si ze bytes are buffered, or until the oldest buffered
dataisDel ay milliseconds old. Then all buffered datais written in one operating system call. The buffered data
is also flushed before some other file operation thanwr i t e/ 2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls. Thus,
thewr i t e/ 2 calls must be for sizes significantly lessthan Si ze, and not interspersed by too many other file
operations.

When this option is used, the result of wr i t e/ 2 calls can prematurely be reported as successful, and if awrite
error occurs, the error is reported as the result of the next file operation, which is not executed.

For example, when del ayed_wri t e is used, after a number of write/2 cals, cl ose/ 1 can return
{error, enospc}, asthereis not enough space on the disc for previously written data. cl ose/ 1 must
probably be called again, asthefileis till open.

del ayed_wite

Thesame as{ del ayed write, Size, Delay} with reasonable default values for Si ze and Del ay
(roughly some 64 KB, 2 seconds).

150 | Ericsson AB. All Rights Reserved.: Kernel

file

{read_ahead, Size}

Activates read data buffering. If r ead/ 2 calls are for significantly less than Si ze bytes, read operations to
the operating system are still performed for blocks of Si ze bytes. The extra data is buffered and returned in
subsequent r ead/ 2 calls, giving a performance gain as the number of operating system callsis reduced.

Ther ead_ahead buffer isalso highly used by functionr ead_| i ne/ 1 inr awmaode, therefore thisoptionis
recommended (for performance reasons) when accessing raw files using that function.

If read/ 2 callsarefor sizes not significantly less than, or even greater than Si ze bytes, no performance gain
can be expected.

read_ahead
Thesameas{r ead_ahead, Si ze} withareasonable default valuefor Si ze (roughly some 64 KB).
conpr essed

Makes it possible to read or write gzip compressed files. Option conpr essed must be combined with r ead
orwrit e, but not both. Notice that the file size obtained withr ead_fi | e_i nf o/ 1 does probably not match
the number of bytes that can be read from a compressed file.

conpr essed_one
Read one member of a gzip compressed file. Option conpr essed_one can only be combined with r ead.
{encodi ng, Encodi ng}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Notice
that the data supplied towr i t e/ 2 or returned by r ead/ 2 till is byte-oriented; this option denotes only how
datais stored in the disk file.

Depending on the encoding, different methods of reading and writing datais preferred. The default encoding of
I ati n1impliesusingthismodule(f i | e) for reading and writing data as the interfaces provided herework with
byte-oriented data. Using other (Unicode) encodingsmakesthei o(3) functionsget _chars,get | i ne,and
put _char s more suitable, as they can work with the full Unicode range.

If dataissentto ani o_devi ce() inaformat that cannot be converted to the specified encoding, or if data
isread by afunction that returns datain aformat that cannot cope with the character range of the data, an error
occurs and the fileis closed.

Allowed values for Encodi ng:
latinl

The default encoding. Bytes supplied to thefile, that is, wr i t e/ 2 are written "asis' on thefile. Likewise,
bytesread from thefile, that is, r ead/ 2 are returned "asis'. If modulei o(3) isused for writing, the file
can only cope with Unicode characters up to code point 255 (the SO Latin-1 range).

uni code or utf8

Characters are trandated to and from UTF-8 encoding before they are written to or read from the file. A
file opened in this way can be readable using function r ead/ 2, as long as no data stored on the file lies
beyond the 1SO Latin-1 range (0..255), but failure occurs if the data contains Unicode code points beyond
that range. Thefile is best read with the functions in the Unicode aware modulei o(3) .

Bytes written to the file by any means are translated to UTF-8 encoding before being stored on the disk file.
utf16 or {utf16, bi g}

Works like uni code, but tranglation is done to and from big endian UTF-16 instead of UTF-8.
{utfieé,little}

Workslike uni code, but trandlation is done to and from little endian UTF-16 instead of UTF-8.

Ericsson AB. All Right