ERLANG

SSH

Copyright © 2005-2023 Ericsson AB. All Rights Reserved.
SSH 5.0.1
September 20, 2023

Copyright © 2005-2023 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 20, 2023

1.1 Introduction

1 SSH User's Guide

The Erlang Secure Shell (SSH) application, ssh, implements the SSH Transport Layer Protocol and provides SSH
File Transfer Protocol (SFTP) clients and servers.

1.1 Introduction

SSH isa protocol for secure remote logon and other secure network services over an insecure network.

1.1.1 Scope and Purpose

SSH providesasingle, full-duplex, and byte-oriented connection between client and server. The protocol also provides
privacy, integrity, server authentication, and man-in-the-middle protection.

The ssh application is an implementation of the SSH Transport, Connection and Authentication Layer Protocolsin
Erlang. It provides the following:

» AP functions to write customized SSH clients and servers applications
e TheErlang shell available over SSH
 AnSFTPclient (ssh_sftp) and server (ssh_sftpd)

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of public keys.

1.1.3 SSH Protocol Overview
Conceptually, the SSH protocol can be partitioned into four layers:

SSH Client/Server Applications

Connection Protocol [Authentication Protocol

Transport Protocol

TCP/IP Stack

Figure 1.1: SSH Protocol Architecture

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

Transport Protocol

The SSH Transport Protocol is a secure, low-level transport. It provides strong encryption, cryptographic host
authentication, and integrity protection. A minimum of Message Authentication Code (MAC) and encryption
algorithms are supported. For details, see the ssh(3) manual pageinssh.

Authentication Protocol

The SSH Authentication Protocol is a general -purpose user authentication protocol run over the SSH Transport Layer
Protocol. The ssh application supports user authentication as follows:
» Using public key technology. RSA and DSA, X509-certificates are not supported.

» Using keyboard-interactive authentication. Thisis suitable for interactive authentication methods that do
not need any special software support on the client side. Instead, all authentication datais entered from the
keyboard.

» Using a pure password-based authentication scheme. Here, the plain text password is encrypted before sent over
the network.

Severa configuration options for authentication handling are available in ssh:connect/[3,4] and ssh.daemon/[2,3].

The public key handling can be customized by implementing the following behaviours from ssh:

* Module ssh_client_key api.
e Module ssh_server key api.

Connection Protocol

The SSH Connection Protocol provides application-support services over the transport pipe, for example, channel
multiplexing, flow control, remote program execution, signal propagation, and connection forwarding. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection in ssh.

Channels

All terminal sessions, forwarded connections, and so on, are channels. Multiple channels are multiplexed into asingle
connection. All channels are flow-controlled. This means that no data is sent to a channel peer until a message is
received to indicate that window spaceisavailable. Theinitial window size specifies how many bytes of channel data
that can be sent to the channel peer without adjusting the window. Typically, an SSH client opens a channel, sends
data (commands), receives data (control information), and then closes the channel. The ssh_client_channel behaviour
handles generic parts of SSH channel management. This makesit easy to write your own SSH client/server processes
that use flow-control and thus opens for more focus on the application logic.

Channels come in the following three flavors:

e Subsystem - Named services that can be run as part of an SSH server, such as SFTP (ssh_sftpd), that is built
into the SSH daemon (server) by default, but it can be disabled. The Erlang ssh daemon can be configured to
run any Erlang- implemented SSH subsystem.

e Shdll - Interactive shell. By default the Erlang daemon runs the Erlang shell. The shell can be customized
by providing your own read-eval-print loop. Y ou can aso provide your own Command-Line Interface (CLI)
implementation, but that is much more work.

» Exec - One-time remote execution of commands. See function ssh_connection:exec/4 for more information.

1.1.4 Where to Find More Information
For detailed information about the SSH protocoal, refer to the following Request for Comments(RFCs):

e RFC 4250 - Protocol Assigned Numbers
e RFC 4251 - Protocol Architecture
* RFC 4252 - Authentication Protocol

2 | Ericsson AB. All Rights Reserved.: SSH

href
href
href

1.2 Getting Started

 RFC 4253 - Transport Layer Protocol

e RFC 4254 - Connection Protocol

* RFC 4344 - Transport Layer Encryption Modes
e RFC 4716 - Public Key File Format

1.2 Getting Started

1.2.1 General Information

The following examples use the utility function ssh:start/O to start all needed applications (cr ypt o, publ i ¢_key,
andssh). All examplesareruninan Erlang shell, or in abash shell, using openssh toillustrate how the s s h application
can be used. The examples are run as the user ot pt est on alocal network where the user is authorized to log in
over ssh to the host tarlop.

If nothing else is stated, it is presumed that the ot pt est user has an entry in the authorized keys file of tarlop
(allowed tolog in over ssh without entering a password). Also, tarlop isaknown host in the known_host s file of
the user ot pt est . This means that host-verification can be done without user-interaction.

1.2.2 Using the Erlang ssh Terminal Client

Theuser ot pt est , which has bash asdefault shell, usesthessh: shel | / 1 client to connect to the openssh daemon
running on a host called tarlop:

1> ssh:start().

ok

2> {ok, S} = ssh:shell("tarlop").
otptest@tarlop:> pwd
/home/otptest

otptest@tarlop:> exit

logout

3>

1.2.3 Running an Erlang ssh Daemon

The syst em di r option must be a directory containing a host key file and it defaultsto / et ¢/ ssh. For details,
see Section Configuration Files in ssh(6).

Normally, the/ et c/ ssh directory is only readable by root. |

Theoptionuser _di r defaultsto directory users ~/. ssh.

Step 1. To run the example without root privileges, generate new keys and host keys:

$bash> ssh-keygen -t rsa -f /tmp/ssh daemon/ssh host rsa key
[...]

$bash> ssh-keygen -t rsa -f /tmp/otptest user/.ssh/id rsa
[...]

Step 2. Create the file / t np/ ot pt est _user/. ssh/ aut hori zed_keys and add the content of /t np/
ot ptest _user/.ssh/id_rsa. pub.

Step 3. Start the Erlang ssh daemon;

Ericsson AB. All Rights Reserved.: SSH | 3

href
href
href
href

1.2 Getting Started

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}1).
{ok,<0.54.0>}
3>

Step 4. Use the openssh client from a shell to connect to the Erlang ssh daemon:

$bash> ssh tarlop -p 8989 -i /tmp/otptest user/.ssh/id rsa \

-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts
The authenticity of host 'tarlop' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ~G)
1>

There are two ways of shutting down an ssh daemon, see Step 5a and Step 5b.

Step 5a. Shut down the Erlang ssh daemon so that it stops the listener but leaves existing connections, started by
the listener, operational:

3> ssh:stop listener(Sshd).
ok
4>

Step 5b. Shut down the Erlang ssh daemon so that it stops the listener and all connections started by the listener:

3> ssh:stop_daemon(Sshd).
ok
4>

1.2.4 One-Time Execution

Erlang client contacting OS standard ssh server
In the following example, the Erlang shell is the client process that receives the channel replies as Erlang messages.
Do an one-time execution of aremote OS command ("pwd") over ssh to the ssh server of the OS at the host "tarlop":

1> ssh:start().

ok

2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, [1).

{ok,<0.57.0>}

3> {ok, ChannellId} = ssh connection:session channel(ConnectionRef, infinity).
{ok,0}

4> success = ssh connection:exec(ConnectionRef, Channelld, "pwd", infinity).
5> flush(). % Get all pending messages. NOTE: ordering may vary!

Shell got {ssh cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}

Shell got {ssh cm,<0.57.0>,{eof,0}}

Shell got {ssh cm,<0.57.0>,{exit status,0,0}}

Shell got {ssh cm,<0.57.0>,{closed,0}}

ok

6> ssh:connection info(ConnectionRef, channels).

{channels, []}

7>

4 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

See ssh_connection and ssh_connection:exec/4 for finding documentation of the channel messages.

To collect the channel messagesin aprogram, user ecei ve. . . end instead of f | ush/ 1:

5> receive

5> {ssh_cm, ConnectionRef, {data, ChannelIld, Type, Result}} when Type == 0 ->
5> {ok,Result}

5> {ssh_cm, ConnectionRef, {data, ChannelIld, Type, Result}} when Type == 1 ->
5> {error,Result}

5> end.

{ok,<<"/home/otptest\n">>}

6>

Note that only the exec channel is closed after the one-time execution. The connection is still up and can handle
previously opened channels. It is also possible to open a new channel:

% try to open a new channel to check if the ConnectionRef is still open

7> {ok, NewChannelId} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 1}

8>

To close the connection, cal the function ssh: cl ose(Connecti onRef). As an dternative, set the option
{idle_tinme, 1} when opening the connection. Thiswill cause the connection to be closed automatically when
there are no channels open for the specified time period, in this case 1 ms.

OS standard client and Erlang daemon (server)

An Erlang SSH daemon could be called for one-time execution of a"command”. The "command" must be asif entered
into the erlang shell, that is a sequence of Erlang expressions ended by a period (.). Variables bound in that sequence
will keep their bindings throughout the expression sequence. The bindings are disposed when the result is returned.

Hereis an example of a suitable expression sequence:

A=1, B=2, == (A + B).

It evaluatesto t r ue if submitted to the Erlang daemon started in Step 3 above:

$bash> ssh tarlop -p 8989 "A=1, B=2, 3 == (A + B)."
true
$bash>

The same example but now using the Erlang ssh client to contact the Erlang server:

1> {ok, ConnectionRef} = ssh:connect("tarlop", 8989, []).

{ok,<0.216.0>}

2> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).

{ok,0}

3> success = ssh _connection:exec(ConnectionRef, Channelld,
"A=1, B=2, 3 == (A + B).",
infinity).

success

4> flush().

Shell got {ssh cm,<0.216.0>,{data,0,0,<<"true">>}}

Shell got {ssh cm,<0.216.0>,{exit status,0,0}}

Shell got {ssh cm,<0.216.0>,{eof,0}}

Shell got {ssh cm,<0.216.0>,{closed,0}}

ok

5>

Ericsson AB. All Rights Reserved.: SSH | 5

1.2 Getting Started

Note that Erlang shell specific functions and control sequences like for example h() . are not supported.

I/O from a function called in an Erlang ssh daemon

Output to stdout on the server sideis also displayed as well as the resulting term from the function call:

$bash> ssh tarlop -p 8989 'io:format("Hello!~n~nHow are ~p?~n",[youl).'
Hello!

How are you?
ok
$bash>

And similar for reading from stdin. Asan examplewe useio:read/1 which displays the argument as a prompt on stdout,
reads a term from stdin and returnsit in an ok-tuple:

$bash> ssh tarlop -p 8989 'io:read("write something: ").'
write something: [a,b,c].

{ok,[a,b,c]}

$bash>

The same exampl e but using the Erlang ssh client:

Eshell V10.5.2 (abort with ~G)
1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, []).
{0k, <0.92.0>}
3> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh _connection:exec(ConnectionRef, Channelld,
"io:read(\"write something: \").",

infinity).
success
5> flush().
Shell got {ssh cm,<0.92.0>,{data,0,0,<<"write something: ">>}}
ok

% All data is sent as binaries with string contents:

6> ok = ssh connection:send(ConnectionRef, Channelld, <<"[a,b,c].">>).
ok

7> flush().

=

Nothing is received, because the io:read/1
requires the input line to end with a newline.

® o O

)
"6
)

"6

%% Send a newline (it could have been included in the last send):
8> ssh _connection:send(ConnectionRef, Channelld, <<"\n">>).
ok

9> flush().

Shell got {ssh cm,<0.92.0>,{data,0,0,<<"{ok, [a,b,c]}">>}}
Shell got {ssh cm,<0.92.0>,{exit status,0,0}}

Shell got {ssh cm,<0.92.0>,{eof,0}}

Shell got {ssh cm,<0.92.0>,{closed,0}}

ok

10>

Configuring the server's (daemon's) command execution

Every time adaemon is started, it enables one-time execution of commands as described in the previous section unless
explicitly disabled.

6 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

There is often a need to configure some other exec evaluator to tailor the input language or restrict the possible
functions to call. There are two ways of doing this which will be shown with examples below. See ssh:daemon/2,3
and exec_daemon_option()) for details.

Examples of the two ways to configure the exec evaluator:

» Disable one-time execution.
To modify the daemon start example above to reject one-time execution requests, we change Step 3 by adding
theoption { exec, di sabl ed} to:

1> ssh:start().

ok

2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{exec, disabled}
1) o

{ok,<0.54.0>}

3>

A call to that daemon will return the text "Prohibited.” on stderr (depending on the client and OS), and the exit
status 255:

$bash> ssh tarlop -p 8989 "test."
Prohibited.

$bash> echo $?

255

$bash>

And the Erlang client library also returns the text "Prohibited.” on data type 1 instead of the normal 0 and exit
status 255:

2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, [1]).
{ok,<0.92.0>}

3> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).
{ok, 0}

4> success = ssh_connection:exec(ConnectionRef, Channelld, "test."
success

5> flush().

Shell got {ssh cm,<0.106.0>,{data,0,1,<<"Prohibited.">>}}

Shell got {ssh cm,<0.106.0>,{exit status,0,255}}

Shell got {ssh cm,<0.106.0>,{eof,0}}

Shell got {ssh cm,<0.106.0>,{closed,0}}

ok

6>

* Instal an dternative evaluator.
Start the damon with areferenceto af un() that handlesthe evaluation:

Ericsson AB. All Rights Reserved.: SSH | 7

1.2 Getting Started

1> ssh:start().
ok
2> MyEvaluator = fun("1") -> {ok, some value};
("2") -> {ok, some other value};
("3") -> {ok, V} = io:read("input erlang term>> "),
{ok, V};
(Err) -> {error,{bad input,Err}}
end.
3> {ok, Sshd} = ssh:daemon(1234, [{system dir, "/tmp/ssh_daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{exec, {direct,MyEvaluator}}
1.
{ok,<0.275.0>}
4>

and call it:

$bash> ssh localhost -p 1234 1
some_value

$bash> ssh localhost -p 1234 2
some_other value

I/0 works:

$bash> ssh localhost -p 1234 3
input erlang term>> abc.

abc

Check that Erlang evaluation is disabled:
$bash> ssh localhost -p 1234 1+ 2.
Error {bad input,"1+ 2."}
$bash>

Note that spaces are preserved and that no point (.) is needed at the end - that was required by the default
evaluator.

The error return in the Erlang client (The text as datatype 1 and exit_status 255):

2> {ok, ConnectionRef} = ssh:connect(loopback, 1234, []).

{ok,<0.92.0>}

3> {ok, ChannelIld} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 0}

4> success = ssh_connection:exec(ConnectionRef, Channelld, "1+ 2.").

success

5> flush().

Shell got {ssh cm,<0.106.0>,{data,0,1,<<"**Error** {bad input,\"1+ 2.\"}">>}}
Shell got {ssh cm,<0.106.0>,{exit status,0,255}}

Shell got {ssh cm,<0.106.0>,{eof,0}}

Shell got {ssh cm,<0.106.0>,{closed,0}}

ok

6>

Thefun() inthe exec option could take up to three arguments (Cnd, User and O i ent Addr ess). Seethe
exec_daemon_option() for the details.

An old, discouraged and undocumented way of installing an alternative evaluator exists.

It still works, but lacksfor example /O possibility. It isbecause of that compatibility weneedthe{ di rect, . . . }
construction.

8 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

1.2.5 SFTP Server
Start the Erlang ssh daemon with the SFTP subsystem:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},

{user dir, "/tmp/otptest user/.ssh"},

{subsystems, [ssh sftpd:subsystem spec(

[{cwd, "/tmp/sftp/example"}])
1.

{ok,<0.54.0>}
3>

Run the OpenSSH SFTP client:

$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest user/.ssh/id rsa \
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts tarlop
Connecting to tarlop...
sftp> pwd
Remote working directory: /tmp/sftp/example
sftp>

1.2.6 SFTP Client
Fetch afile with the Erlang SFTP client:

1> ssh:start().

ok

2> {ok, ChannelPid, Connection} = ssh sftp:start channel("tarlop", []).
{0k,<0.57.0>,<0.51.0>}

3> ssh sftp:read file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

1.2.7 SFTP Client with TAR Compression

Basic example

Thisis an example of writing and then reading atar file:

{ok,HandleWrite} = ssh sftp:open tar(ChannelPid, ?tar file name, [writel),

ok = erl tar:add(HandleWrite,),

ok = erl tar:add(HandleWrite,),

ék.= erl tar:add(HandleWrite,),

ok = erl tar:close(HandleWrite),

%% And for reading

{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read]),
{ok,NameValueList} = erl tar:extract(HandleRead, [memory]),

ok = erl tar:close(HandleRead),

Example with encryption

The previous Basic example can be extended with encryption and decryption as follows:

Ericsson AB. All Rights Reserved.: SSH | 9

1.2 Getting Started

%% First three parameters depending on which crypto type we select:
Key = <<"This is a 256 bit key. abcdefghi">>,

IvecO = crypto:strong rand bytes(16),

DataSize = 1024, % DataSize rem 16 = 0 for aes cbc

%% Initialization of the CryptoState, in this case it is the Ivector.
InitFun = fun() -> {ok, IvecO, DataSize} end,

%% How to encrypt:
EncryptFun =
fun(PlainBin,Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec, PlainBin),
{ok, EncryptedBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

%% What to do with the very last block:
CloseFun =
fun(PlainBin, Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec,
pad(16,PlainBin) %% Last chunk
)I
{ok, EncryptedBin}
end,

Cw = {InitFun,EncryptFun,CloseFun},
{ok,HandleWrite} = ssh sftp:open_tar(ChannelPid, ?tar file name, [write,{crypto,Cw}]),
ok = erl tar:add(HandleWrite,),

ok erl tar:add(HandleWrite,),
ok = erl tar:add(HandleWrite,),
ok = erl tar:close(HandleWrite),

%% And for decryption (in this crypto example we could use the same InitFun
%% as for encryption):
DecryptFun =
fun(EncryptedBin,Ivec) ->
PlainBin = crypto:block decrypt(aes cbc256, Key, Ivec, EncryptedBin),
{ok, PlainBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

Cr = {InitFun,DecryptFun},
{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read,{crypto,Cw}]),

{ok,NameValueList} = erl tar:extract(HandleRead, [memoryl]),
ok = erl tar:close(HandleRead),

1.2.8 Creating a Subsystem

A small ssh subsystem that echoes N bytes can be implemented as shown in the following example:

10 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

-module(ssh _echo server).
-behaviour(ssh _server channel). % replaces ssh _daemon channel
-record(state, {
n,
id,
cm
1.
-export([init/1, handle msg/2, handle ssh msg/2, terminate/2]).

init([N]) ->
{ok, #state{n = N}}.

handle msg({ssh channel up, Channelld, ConnectionManager}, State) ->
{ok, State#state{id = Channelld,
cm = ConnectionManager}}.

handle ssh msg({ssh cm, CM, {data, Channelld, 0, Data}}, #state{n = N} = State) ->
M =N - size(Data),
case M > 0 of
true ->
ssh_connection:send(CM, Channelld, Data),
{ok, State#state{n = M}};
false ->
<<SendData:N/binary, /binary>> = Data,
ssh _connection:send(CM, Channelld, SendData),
ssh _connection:send eof(CM, Channelld),
{stop, Channelld, State}
end;
handle ssh msg({ssh cm, ConnectionManager,
{data, Channelld, 1, Data}}, State) ->

error_logger:format(standard error, " ~p~n", [binary to list(Data)l),

{ok, State};
handle ssh msg({ssh cm, ConnectionManager, {eof, Channelld}}, State) ->
{ok, State};
handle ssh msg({ssh cm, , {signal, , }}, State) ->
%% Ignore signals according to RFC 4254 section 6.9.
{ok, State};
handle ssh msg({ssh cm, , {exit signal, Channelld, , Error, }},
State) ->

{stop, Channelld, State};

handle ssh msg({ssh cm, , {exit status, Channelld, Status}}, State) ->
{stop, Channelld, State}.

terminate(Reason, State) ->
ok.

The subsystem can be run on the host tarlop with the generated keys, as described in Section Running an Erlang
ssh Daemon:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh_daemon"},
{user dir, "/tmp/otptest user/.ssh"}
{subsystems, [{"echo n", {ssh echo server, [10]}}]}]).
{ok,<0.54.0>}
3>

Ericsson AB. All Rights Reserved.: SSH | 11

1.3 Terminology

1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect("tarlop", 8989,

[{user dir, "/tmp/otptest user/.ssh"}]).

{0k, <0.57.0>}
3> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).
4> success = ssh_connection:subsystem(ConnectionRef, Channelld, "echo n", infinity).
5> ok = ssh _connection:send(ConnectionRef, Channelld, "0123456789", infinity).
6> flush().

{ssh msg, <0.57.0>, {data, 0, 1, "0123456789"}}

{ssh msg, <0.57.0>, {eof, 0}}

{ssh _msg, <0.57.0>, {closed, 0}}
7> {error, closed} = ssh connection:send(ConnectionRef, Channelld, "10", infinity).

See also ssh_client_channel (3) (replaces ssh_channel (3)).

1.3 Terminology

1.3.1 General Information

In the following terms that may cause confusion are explained.

1.3.2 The term "user"

A "user" is aterm that everyone understands intuitively. However, the understandings may differ which can cause
confusion.

The term is used differently in OpenSSH and SSH in Erlang/OTP. The reason is the different environments and use
cases that are not immediately obvious.

This chapter aims at explaining the differences and giving arationale for why Erlang/OTP handles "user” asit does.

In OpenSSH

Many have been in contact with the command 'ssh' on a Linux machine (or similar) to remotly log in on another
machine. One types

ssh host

to log in on the machine named host . The command prompts for your password on the remote host and then you
can read, write and execute as your user name has rights on the remote host . There are stronger variants with pre-
distributed keys or certificates, but that are for now just details in the authentication process.

You could log in asthe user anot her user with
ssh anotheruser@host

and you will then be enabled to act asanot her user onthehost if authorized correctly.

So what does "your user name has rights' mean? In a UNIX/Linux/etc context it is exactly as that context: The user
could read, write and execute programs according to the OS rules. In addition, the user has a home directory ($HOVE)
and thereisa$HOVE/ . ssh/ directory with ssh-specific files.

SSH password authentication

When SSH tries to log in to a host, the ssh protocol communicates the user name (as a string) and a password. The
remote ssh server checks that there is such a user defined and that the provided password is acceptable.

If so, the user is authorized.

12 | Ericsson AB. All Rights Reserved.: SSH

href

1.3 Terminology

SSH public key authentication

Thisis a stronger method where the ssh protocol brings the user name, the user's public key and some cryptographic
information which we could ignore here.

The ssh server on the remote host checks:

e That the user has ahome directory,
» that home directory contains a .ssh/ directory and
e the.ssh/ directory contains the public key just received inthe aut hori zed_keys file

if so, the user is authorized.
The SSH server on UNIX/Linux/etc after a successful authentication
After asuccessful incoming authentication, a new process runs as the just authenticated user.

Next step is to start a service according to the ssh request. In case of arequest of a shell, a new one is started which
handles the OS-commands that arrives from the client (that's "you").

In case of a sftp request, an sftp server is started in with the user's rights. So it could read, write or delete files if
allowed for that user.

In Erlang/OTP SSH

For the Erlang/OTP SSH server the situation is different. The server executes in an Erlang process in the Erlang
emulator which in turn executesin an OS process. The emulator does not try to changeits user when authenticated over
the SSH protocol. So the remote user name is only for authentication purposes in the Erlang/OTP SSH application.

Password authentication in Erlang SSH
The Erlang/OTP SSH server checks the user name and password in the following order:

e |f apwdf un isdefined, that oneis called and the returned boolean is the authentication result.

* Elsg if theuser _passwor ds optionis defined and the username and the password matches, the
authentication is a success.

e Elsg if the option passwor d is defined and matches the password the authentication is a success. Note that the
use of this option is not recommended in non-test code.
Public key authentication in Erlang SSH

The user name, public key and cryptographic data (a signature) that is sent by the client, are used as follows (some
steps |eft out for clearity):
e A calback moduleis selected using the optionskey_cb.

e Thecallback module is used to check that the provided public key is one of the user's pre-stored. In case of the
default callback module, thefilesaut hori zed_keys and aut hori zed_keys2 are searched in adirectory
found in the following order:

e |ftheoptionuser dir_fun isdefined, that funiscaled and the returned directory is used,
* Elsg If theoption user _di r isdefined, that directory is used,

e Elsethe subdirectory . ssh in the home directory of the user executing the OS process of the Erlang
emulator is used.

If the provided public key is not found, the authentication fails.
« Finaly, if the provided public key isfound, the signature provided by the client is checked with the public key.
The Erlang/OTP SSH server after a successful authentication

After a successful authentication an Erlang process is handling the service request from the remote ssh client. The
rights of that process are those of the user of the OS process running the Erlang emulator.

Ericsson AB. All Rights Reserved.: SSH | 13

1.4 Configuration in SSH

If ashell service request arrives to the server, an Erlang shell is opened in the server's emulator. The rights in that
shell isindependent of the just authenticated user.

In case of an sftp request, an sftp server is started with the rights of the user of the Erlang emulator's OS process. So
with sftp the authenticated user does not influence the rights.

So after an authentication, the user name is not used anymore and has no influence.

1.4 Configuration in SSH

1.4.1 Introduction

The OTP SSH app can be configurated by a large amount of Options. This chapter will not go into details of what
each of the options does. It will however describe and define different ways by which they could be entered.

Options for hardening are described in the Hardening SSH chapter. How the options for algorithm configuration
interact are described in the Configuring algorithmsin SSH chapter.

1.4.2 Options configuration
There are from OTP-23.0 two main ways to set an option:

» Likebefore, inthe Opt i ons parameter in the Erlang code in a call to for example ssh:daemon/3 or
ssh:connect/3 or any of their variants. Example:

ssh:connect (22, [{user,"fo0"}])

* In OTP Configuration Parameters:

* Intheerl command line:

erl -ssh user \"foo\"

* Inthessh. app file intheenv part

{application, ssh,
[{description, "SSH-2 for Erlang/0TP"},
{vsn, "4.9"},
{modules, [ssh,

ssh_xferl},
{registered, []},

{applications, [kernel, stdlib, crypto, public keyl},
{env, [{user, "bar"l}, % <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< HERE

{mod, {ssh_app, [1}},
* Ina.configfile:
erl -config exl
whereex1. confi g contains:
[
%ssh, [{user, "foo"}]}

If the option isintended only for a server or for aclient, it may be set in thisway:

14 | Ericsson AB. All Rights Reserved.: SSH

1.4 Configuration in SSH

[
{ssh, [{server options,[{user, "foo"}1},
{client_options, [{user, "bar"}]}

1.

A server (daemon) will use the user name f 00, and a client will use the name bar .

1.4.3 Precedens

If an option is set in more than one way, what happens?

Thereisan ordering, whichis:

e Level 0: Hard-coded default values in the OTP SSH source code

* Level 1: OTP Configuration Parameters

e Level 2: Optionsin the OTP Configuration Parametersser ver _opti ons orcl i ent _opti ons
e Level 3: Optionsin argument list to afunction

If the same option is set at two different levels, the one at the highest level is used.

The only exception isthe modify_algorithms common option. They are all applied in ascending level order on the set
of algorithms. Soanodi fy_al gori t hns on level oneis applied before one of level two and so on.

If there is an preferred_algorithms option on some level the whole set is replaced by that in that option and all
modify_algorithmsare applied in level ordering.

The reason for applying all modify_algorithmsin level order, isto enable the user to add an algorithm that has been
removed from the default set without code changes, only by adding an option in a config file. This can be used to
interoperate with legacy systems that still uses algorithms no longer considered secure enough to be supported by
defaullt.

Algorithm configuration

There is a separate chapter about how preferred_algorithms and modify_algorithms co-operate. How the different
configuration levels affect them, is described here in this section.

The ssh:start/0 function

If the application SSH is not started, the command ssh:default_algorithms/0 delivers the list of default (hardcoded)
algorithms with respect to the support in the current cryptolib.

If the application SSH is started, the command ssh:default_algorithms/0 delversthelist of algorithms after application
of level 0 and level 1 configurations.

Here is an example. The config-file has the following contents:

$ cat ex2.config
[
{ssh, [{preferred algorithms, [{cipher, ['aesl92-ctr']},
{public_key, ['ssh-rsa'l},
{kex, ['ecdh-sha2-nistp384']},
{mac, ['hmac-shal']}1}1}
1.

Erlang is started with ex2. conf i g as configuration and we check the default set of algorithms before starting ssh:

Ericsson AB. All Rights Reserved.: SSH | 15

1.4 Configuration in SSH

$ erl -config ex2
Erlang/0TP 23 [RELEASE CANDIDATE 1] [erts-10.6.4] [source-96a0823109] [64-bit] [smp:4:4] [ds:4:4:10] [async-thi

Eshell V10.6.4 (abort with ~G)
1> ssh:default algorithms().

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521',

'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256', 'curve25519-sha256',
'curve25519-sha256@libssh.org', 'curve448-sha512",
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521"',
'ecdsa-sha2-nistp256', 'ssh-ed25519', 'ssh-ed448', 'ssh-rsa’',
'rsa-sha2-256"', 'rsa-sha2-512', 'ssh-dss']},

{cipher, [{client2server,['chacha20-polyl305@openssh.com',
'aes256-gcm@openssh.com', 'aes256-ctr', 'aesl92-ctr',
'aes128-gcm@openssh.com', 'aes128-ctr', 'aes256-cbc’,
'aesl92-cbc', 'aes128-cbc', '3des-cbc']},

{server2client, ['chacha20-polyl305@openssh.com',
'aes256-gcm@openssh.com', 'aes256-ctr', 'aesl92-ctr',
'aesl28-gcm@openssh.com', 'aes128-ctr', 'aes256-cbc’,
'aesl92-cbc', 'aes128-cbhc', '3des-cbc']1}1},

{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",

‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l}]1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}1}]

Note that the algorithmsin thefileex2. conf i g is not yet applied. They will be when we start ssh:

2> ssh:start().
ok
3> ssh:default algorithms().
[{kex, ['ecdh-sha2-nistp384']},
{public key,['ssh-rsa'l},
{cipher, [{client2server,['aes192-ctr'l},
{server2client,['aes192-ctr']}]},
{mac, [{client2server,['hmac-shal']},
{server2client,['hmac-shal']}]},
{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},
{server2client, [none, 'zlib@openssh.com',zlib]}1}]
4>

We see that the algorithm set is changed to the one in the ex2. conf i g. Since conpr essi on is not specified in
thefile, the hard-coded default is still used for that entry.
Establishing a connection (ssh:connect et al) or starting a daemon (ssh:daemon)

Both when the client establishes a connection with ssh:connect or other functions, or a daemon is started with
ssh:daemon, the option listsin the function calls are also used.

If aclient is started (ssh:connect et al), the environment variablecl i ent _opt i ons isused. Similarly for adaemon
theserver opti ons variableishandled.

If any preferred_algorithms is present, the one with the highest level is used, that is, the Opt i on list parameter has
the highest priority. Then the modify_algorithms on al levelsin order starting with level O are applied.

We continue the example above by connecting to a server and modifying the kex algorithm set. We remove the only
one (' ecdh-sha2- ni st p384')andadd' cur ve25519- sha256@ i bssh. org' by appending it to the now
empty list:

16 | Ericsson AB. All Rights Reserved.: SSH

1.4 Configuration in SSH

4> {ok,C} = ssh:connect(loopback, 22,
[{modify algorithms,
[{rm,
[{kex,['ecdh-sha2-nistp384']} 1

{append,
[{kex,['curve25519-sha256@libssh.org']} 1

1.
{ok,>0.118.0>}

We check which algorithms are negotiated by the client and the server, and note that the (only) kex algorithm
' curve25519-sha256@ i bssh. org' was selected:

5> ssh:connection info(C, algorithms).
{algorithms, [{kex, 'curve25519-sha256@libssh.org'},
{hkey, 'ssh-rsa'},
{send _mac, 'hmac-shal'},
{recv_mac, 'hmac-shal'},
{encrypt, 'aes192-ctr'},
{decrypt, 'aes192-ctr'},
{compress,none},
{decompress, none},
{send ext info,false},
{recv_ext info,true}l}

Example of modify_algorithms handling

We will now check if the modify_algorithms on alower level is applied to a preferred_algorithms on a higher level.
We will do that by enabling the ssh- dss algorithm that is supported, but not in the default set.

The config fileex3. conf i g hasthe contents:

[
{ssh, [{modify algorithms,

[{prepend, [{public key, ['ssh-dss'1}1} 1
: 13

A newly started erlang shell showsthat no' ssh-dss' ispresentinthepubl i c_key entry:

1> proplists:get value(public key, ssh:default algorithms()).

['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-ed25519', 'ssh-ed448",
'rsa-sha2-256"', 'rsa-sha2-512', 'ssh-rsa']

2>

A call tossh: connect / 3 removes all algorithms but one of each type:

Ericsson AB. All Rights Reserved.: SSH | 17

1.5 Configuring algorithms in SSH

2> ssh:start().
ok
3> {ok,C} = ssh:connect(loopback, 22,
[{preferred algorithms,
[{public_key, ['ecdsa-sha2-nistp256']},
{kex, ['ecdh-sha2-nistp256']},
{cipher, ['chacha20-polyl305@openssh.com']},
{mac, ['hmac-sha2-256']},
{compression, [nonel}

1}

1.

{o0k,<0.101.0>}

4> ssh:connection info(C,algorithms).

{algorithms, [{kex, 'ecdh-sha2-nistp256'},
{hkey, 'ssh-dss'},
{send mac, 'chacha20-polyl305@openssh.com'},
{recv_mac, 'chacha20-polyl305@openssh.com'},
{encrypt, 'chacha20-polyl305@openssh.com'},
{decrypt, 'chacha20-polyl305@openssh.com'},
{compress,none},
{decompress,none},
{send ext info,false},
{recv_ext info,true}l}

5>

But' ssh-dss' isselected although the call inserted only ' ecdsa- sha2- ni st p256' asacceptable.

This example showed that we could augment the set of algorithms with a config-file without the need to change the
actua call.

For demonstration purposes we used pr epend instead of append. This forces the negotiation to select ssh- dss
since the the full list of public key algorithmswas|[' ssh-dss', ' ecdsa- sha2-ni st p256'] . Normaly it is
safer to append a non-default algorithm.

1.5 Configuring algorithms in SSH

1.5.1 Introduction

To fully understand how to configure the algorithms, it is essential to have a basic understanding of the SSH protocol
and how OTP SSH app handles the corresponding items

Thefirst subsection will give ashort background of the SSH protocol while later sections describesthe implementation
and provides some examples

How the different levels of configuration "interfer" with this, see the section Algorithm Configuration in the chapter
Configuration in SSH.
Basics of the ssh protocol's algorithms handling

SSH uses different sets of algorithms in different phases of a session. Which algorithms to use is negotiated by the
client and the server at the beginning of asession. See RFC 4253, "The Secure Shell (SSH) Transport Layer Protocol”
for details.

The negotiation is simple: both peers sends their list of supported alghorithms to the other part. The first algorithm
on the client's list that also in on the server's list is selected. So it is the client's orderering of the list that gives the
priority for the algorithms.

There are five lists exchanged in the connection setup. Three of them are also divided in two directions, to and from
the server.

The lists are (named as in the SSH application's options):

18 | Ericsson AB. All Rights Reserved.: SSH

href

1.5 Configuring algorithms in SSH

kex
Key exchange.

An agorithm is selected for computing a secret encryption key. Among examples are: the old nowadays
week ' di ffi e-hel | man- gr oup- exchange-shal' and the very strong and modern ' ecdh- sha2-
ni st p512'.

public_key
Server host key

The asymmetric encryption algorithm used in the server's private-public host key pair. Examplesinclude the well-
known RSA ' ssh-rsa' anddliptic curve' ecdsa- sha2- ni st p521' .

ci pher

Symmetric cipher algorithm used for the payload encryption. This algorithm will use the key calculated in the
kex phase (together with other info) to generate the actual key used. Examples are tripple-DES ' 3des- cbc'
and one of many AES variants' aes192-ctr"' .

Thislist isactualy two - one for each direction server-to-client and client-to-server. Thereforeit is possible but
rare to have different algorithmsin the two directions in one connection.

nmac
M essage authentication code

"Check sum" of each message sent between the peers. Examplesare SHA ' hnac- shal' and SHA2' hnac-
sha2-512".

Thislist isalso divided into two for the both directions

conpr essi on
If and how to compress the message. Examples are none, that is, no compression and z1 i b.
Thislist isaso divided into two for the both directions

The SSH app's mechanism
The set of algorithms that the SSH app uses by default depends on the algorithms supported by the:

* Crypto app,
e Thecryptolib OTPislinked with, usually the one the OS uses, probably OpenSSL,
e andfinally what the SSH app implements

Dueto this, it impossible to list in documentation what algorithms that are available in a certain installation.
Thereis an important command to list the actual algorithms and their ordering: ssh:default_algorithms/0.

Ericsson AB. All Rights Reserved.: SSH | 19

1.5 Configuring algorithms in SSH

0> ssh:default algorithms().

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256"',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521"',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server, ['aes256-gcm@openssh.com',

'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-cbhc', '3des-cbc']},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc']1}1},

{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",

‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal']1}]1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}1}]

To change the algorithm list, there are two options which can be used in ssh:connect/2,3,4 and ssh:daemon/2,3. The
options could of course be used in all other functions that initiates connections.

The options are preferred_algorithms and modify_algorithms. The first one replaces the default set, while the latter
modifies the default set.

1.5.2 Replacing the default set: preferred_algorithms
See the Reference Manual for details

Here follows a series of examples ranging from simple to more complex.

To forsee the effect of an option there is an experimental function ssh: chk_al gos _opts(Opts). It
manglesthe optionspr ef erred_al gori t hns andnodi fy_al gori t hns inthe sameway asssh: daenon,
ssh: connect and their friends does.

Example 1
Replace the kex algorithms list with the single algorithm* di f f i e- hel | man- gr oup14- sha256' :

20 | Ericsson AB. All Rights Reserved.: SSH

1.5 Configuring algorithms in SSH

1> ssh:chk algos opts(
[{preferred algorithms,
[{kex, ['diffie-hellman-groupl4-sha256']}
1
)
1.

[{kex,['diffie-hellman-groupl4-sha256']},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521",
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server, ['aes256-gcm@openssh.com',

'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-chc', '3des-cbc']},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc']1}1},

{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512",

‘hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512",
‘hmac-shal']1}]1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}]1}]

Note that the unmentioned lists (publ i ¢_key, ci pher, nac and conpr essi on) are un-changed.

Example 2
In the liststhat are divided in two for the two directions (c.f ci pher) itis possibleto change both directions at once:

2> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aesl28-ctr']}
]

}
1.

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521",
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
‘diffie-hellman-groupl6-sha512"',
‘diffie-hellman-groupl8-sha512"',
‘diffie-hellman-groupl4-sha256"',
‘diffie-hellman-groupl4-shal’,
‘diffie-hellman-group-exchange-shal']},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521",
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server,['aesl28-ctr'l]},

{server2client,['aes128-ctr']}]},
{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l}]},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}]1}]

Note that both listsin ci pher has been changed to the provided value (' aes128-ctr').

Example 3

Intheliststhat aredivided intwo for thetwo directions(c.f ci pher) itispossibleto change only one of the directions:

Ericsson AB. All Rights Reserved.: SSH | 21

1.5 Configuring algorithms in SSH

3> ssh:chk algos opts(
[{preferred algorithms,
[{cipher, [{client2server,['aes128-ctr']}]1}
1
)
1.

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256"',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public_key, ['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521",
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server,['aesl28-ctr'l]},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc']1}1},

{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",

‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l1}]1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}1}]

Example 4
It is of course possible to change more than one list:

4> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aes128-ctr'l]},
{mac, ['hmac-sha2-256"'1},
{kex, ['ecdh-sha2-nistp384'1]},
{public_key, ['ssh-rsa'l},
{compression, [{server2client, [nonel},
{client2server,[zlib]}]1}
1
)
1.
[{kex, ['ecdh-sha2-nistp384'1},
{public_key,['ssh-rsa'l},
{cipher, [{client2server,['aesl28-ctr'l]},
{server2client,['aes128-ctr']1}1},
{mac, [{client2server,['hmac-sha2-256"'1]},
{server2client,['hmac-sha2-256']1}1},
{compression, [{client2server, [zlib]},
{server2client, [none]}]}]

Note that the ordering of the tuplesin the lists didn't matter.

1.5.3 Modifying the default set: modify algorithms

A situation where it might be useful to add an algorithm is when one need to use a supported but disabled one. An
exampleisthe' di f fi e- hel | man- gr oupl-shal' which nowadaysisvery unsecure and therefore disabled. It
is however still supported and might be used.

The option pr ef er r ed_al gori t hms may be complicated to use for adding or removing single algorithms. First
one hasto list them with ssh: def aul t _al gori t hns() and then do changesin thelists.

22 | Ericsson AB. All Rights Reserved.: SSH

1.5 Configuring algorithms in SSH

To facilitate addition or removal of algorithms the option nodi fy_al gori t hns is available. See the Reference
Manual for details.

The option takes a list with instructions to append, prepend or remove algorithms:

{modify algorithms, [{append, ...},
{prepend, ...},
{rm, A
1}

Eachof the. .. canbeaal gs_I|i st () astheargumenttothepr ef erred_al gori t hims option.

Example 5

As an example let's add the Diffie-Hellman Groupl first in the kex list. It is supported according to Supported
algorithms.

5> ssh:chk algos opts(
[{modify algorithms,
[{prepend,
[{kex,['diffie-hellman-groupl-shal']}]

]
}

1).

[{kex,['diffie-hellman-groupl-shal', 'ecdh-sha2-nistp384',
'ecdh-sha2-nistp521', 'ecdh-sha2-nistp256',
'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public_key,['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256"',
'rsa-sha2-512"', 'ssh-dss'1},
{cipher, [{client2server, ['aes256-gcm@openssh.com',
'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-chc', '3des-cbc']},
{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc'1}1},
{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",
'hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
'hmac-shal'l}]1},
{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},
{server2client, [none, 'zlib@openssh.com',zlib]}1}]

And the result shows that the Diffie-Hellman Groupl is added at the head of the kex list

Example 6

In this example, we in put the 'diffie-hellman-groupl-shal' first and also move the' ecdh- sha2- ni st p521' to
theend in the kex ligt, that is, append it.

Ericsson AB. All Rights Reserved.: SSH | 23

1.5 Configuring algorithms in SSH

6> ssh:chk algos opts(
[{modify algorithms,
[{prepend,
[{kex, ['diffie-hellman-groupl-shal']}
1},
{append,
[{kex, ['ecdh-sha2-nistp521']}
1}
1
}

1).

[{kex,['diffie-hellman-groupl-shal', 'ecdh-sha2-nistp384',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256"',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal', 'ecdh-sha2-nistp521']},

{public_key, ['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521",

Note that the appended algorithm is removed from its original place and then appended to the samellist.

Example 7

In this example, we use both options (pr ef erred_al gori t hns and nodi fy_al gori t hns) and aso try to
prepend an unsupported algorithm. Any unsupported algorithm is quietly removed.

7> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aes128-ctr']},
{mac, ['hmac-sha2-256"']},
{kex, ['ecdh-sha2-nistp384'1},
{public_key,['ssh-rsa']},
{compression, [{server2client, [nonel},
{client2server,[zlib]}]}
]

}l
{modify algorithms,
[{prepend,
[{kex, ['some unsupported algorithm']}
1},
{append,
[{kex, ['diffie-hellman-groupl-shal']}
1}
]
}

1).
[{kex, ['ecdh-sha2-nistp384', 'diffie-hellman-groupl-shal'l},
{public_key, ['ssh-rsa']},
{cipher, [{client2server,['aesl128-ctr'l]},
{server2client,['aes128-ctr']}]},
{mac, [{client2server, ['hmac-sha2-256"'1]},
{server2client, ['hmac-sha2-256"']1}]},
{compression, [{client2server, [zlib]},
{server2client, [none]}]}]

It is of course questionable why anyone would like to use the both these options together, but it is possible if an
unforeseen need should arise.

24 | Ericsson AB. All Rights Reserved.: SSH

1.6 Hardening

Example 8

Inthisexample, we need to use adiffie-hellman-groupl-shal key exchangeal gorithm although it isunsafe and disabled
by default.

We use the modify_algorithms option, because we want to keep all other algorithm definitions.
We add the option:

{modify algorithms, [{append, [{kex,['diffie-hellman-groupl-shal']}1}]}

either to the Optionslist in afunction call, inthessh. app fileorina. conf i g filefor theer| command. Seethe
chapter Configuration in SSH in the SSH User's Guide.

Example 9

In this example, we need to use a DSA key for sign and verify. It might be either as a user's key, a host's key or both.

To do that, we enable the 'ssh-dss' algorithm that is disabled by default by security reasons. We use the
modify_algorithms option, because we want to keep all other algorithm definitions.

We add the option:
{modify algorithms, [{append, [{public key,['ssh-dss']1}1}1}

either to the Optionslist in afunction call, inthessh. app fileorina. confi g filefor theer| command. Seethe
chapter Configuration in SSH in the SSH User's Guide.

1.6 Hardening

1.6.1 Introduction

The Erlang/OTP SSH application is intended to be used in other applications as alibrary.

Different applications using this library may have very different requirements. One application could be running on a
high performance server, while another is running on a small device with very limited cpu capacity. For example, the
first one may accept many users simultaneously logged in, while the second one wants to limit them to only one.

That simple example showsthat it isimpossibleto deliver the SSH application with default values on hardening options
aswell on other options that suites every need.

The purpose of thisguideisto discussthe different hardening options available, asaguideto the reader. Configuration
in general is described in the Configuration in SSH chapter.

1.6.2 Resilience to DoS attacks
The following applies to daemons (servers).

DoS (Denial of Service) attacks are hard to fight at the node level. Here are firewalls and other means needed, but
that is out of scope for this guide. However, some measures could be taken in the configuration of the SSH server to
increase the resilence. The optionsto use are:

Counters and parallelism

max_sessions
The maximum number of simultaneous sessions that are accepted at any time for this daemon. Thisincludes
sessions that are being authorized. The default is that an unlimited number of simultaneous sessions are
alowed. It isagood candidate to set if the capacity of the server islow or a capacity margin is needed.
max_channels
The maximum number of channels that are accepted for each connection. The default is unlimited.

Ericsson AB. All Rights Reserved.: SSH | 25

1.6 Hardening

parallel_login
If set to false (the default value), only onelogin is handled at atime. If set to true, the number of simultaneous
login attempts are limited by the value of the max_sessions option.

Timeouts

hello_timeout
If the client fails to send the first ssh message after atcp connection setup within thistime (in milliseconds),
the connection is closed. The default value is 30 seconds. Thisis actually a generoustime, so it can lowered to
make the daemon less prone to DoS attacks.

negotiation_timeout
Maximum time in milliseconds for the authentication negotiation counted from the TCP connection
establishment. If the client failsto log in within this time the connection is closed. The default valueis 2
minutes. It is quite along time, but can lowered if the client is supposed to be fast like if it is a program logging
in.

idle time
Sets atime-out on a connection when no channels are left after closing the final one. It defaultsto infinity.

max_initia_idle_time
Sets atime-out on a connection that will expireif no channel is opened on the connection. The timeout is
started when the authentication phase is completed. It defaults to infinity.

A figure clarifies when atimeout is started and when it triggers:

TCP connected

I hello_timeout negotiation_timeocut

First SSH message received
Key Exchange finished
Authorized v]

max_initial_idle time

Channel 1 opened

Channel n opened

Channel x, closed

Channel x_closed (all channels closed)
idle time

Connection closed

TCP closed

Y time

Figure 6.1: SSH server timeouts

26 | Ericsson AB. All Rights Reserved.: SSH

1.6 Hardening

1.6.3 Verifying the remote daemon (server) in an SSH client

Every SSH server presents a public key - the host key - to the client while keeping the corresponding private key in
relatively safe privacy.

The client checks that the host that presented the public key also possesses the private key of the key-pair. That check
is part of the SSH protocoal.

But how can the client know that the host really isthe one that it tried to connect to and not an evil one impersonating
the expected oneusing itsown valid key-pair? There are two alternatives avail able with the default key handling plugin
ssh_fil e. Thedternatives are:

Pre-store the host key

e For the default handler ssh_file, store the valid host keysin the file known_host s and set the option
silently_accept _hoststof al se.

e or, write aspecialized key handler using the SSH client key APl that accesses the pre-shared key in some
other way.

Pre-store the "fingerprint" (checksum) of the host key
e silently_accept hosts
e accept_cal | back()
e {HashAl goSpec, accept_call back()}

1.6.4 Verifying the remote client in a daemon (server)
Password checking

The default password checking is with the list in the user_passwords option in the SSH daemon. It could be
replaced with a pwdfun plugin. The arity four variant (pwdf un_4()) can aso be used for introducing delays
after failed password checking attempts. Here is a ssmple example of such a pwdfun:

fun(User, Password, PeerAddress, State) ->
case lists:member({User,Password}, my user pwds()) of

true ->
{true, undefined}; % Reset delay time
false when State == undefined ->

timer:sleep(1000),
{false, 2000}; % Next delay is 2000 ms
false when is integer(State) ->
timer:sleep(State),
{false, 2*State} % Double the delay for each failure
end
end.

If a public key is used for logging in, there is normally no checking of the user name. It could be enabled by
setting theoptionpk_check_user tot r ue. Inthat casethe pwdfunwill get theatom pubkey inthe password
argument.

1.6.5 Hardening in the cryptographic area

Algorithm selection

One of the cornerstones of security in SSH is cryptography. The development in crypto analysisisfast, and yesterday's
secure algorithms are unsafe today. Therefore some algorithms are no longer enabled by default and that group grows
with time. See the SSH (App) for a list of supported and of disabled algorithms. In the User's Guide the chapter
Configuring algorithms in SSH describes the options for enabling or disabling algorithms - preferred_algorithms and
modify_algorithms.

Ericsson AB. All Rights Reserved.: SSH | 27

1.6 Hardening

Re-keying

Inthe setup of the SSH connection a secret cipher key isgenerated by co-operation of the client and the server. Keeping
thiskey secretiscrucial for keeping the communication secret. Astime passes and encrypted messages are exchanged,
the probability that alistener could guess that key increases.

The SSH protocol therefore hasaspecial operation defined - key re-negotiation or re-keying. Any side (client or server)
could initiate the re-keying and the result is a new cipher key. The result is that the eves-dropper has to restart its evil
and dirty craftmanship.

See the option rekey _limit for a description.

1.6.6 Hardening of the SSH protocol - both daemons and clients

Disabling shell and exec in a daemon

A daemon has two services for evaluating tasks on behalf of a remote client. The exec server-side service takes a
string provided by the client, evaluates it and returns the result. The shell function enables the client to open a shell
in the shell host.

Those service could - and should - be disabled when they are not needed. The options exec and shell are enabled per
default but could be set to di sabl ed if not needed. The same options could also install handlers for the string(s)
passed from the client to the server.

The id string

One way to reduce the risk of intrusion is to not convey which software and which version the intruder is connected
to. Thislimitsthe risk of an intruder exploiting known faults or peculiarities learned by reading the public code.

Each SSH client or daemon presents themselves to each other with brand and version. This may look like
SSH-2.0-Erlang/4.10
or
SSH-2.0-0penSSH_7.6p1 Ubuntu-4ubuntu0.3
This brand and version may be changed with the optionid_string. We start a daemon with that option:
ssh:daemon (1234, [{id string,"hi there"}, ... 1).
and the daemon will present itself as:
SSH-2.0-hi there
Itis possible to replace the string with one randomly generated for each connection attempt. See the reference manual

for id_string.

1.6.7 Client connection options

A client could limit the time for the initial tcp connection establishment with the option connect_timeout. The time
isin milliseconds, and the initial valueisinfinity.

The negotiation (session setup time) time can be limited with the parameter Negot i ati onTi neout in a call
establishing an ssh session, for example ssh:connect/3.

28 | Ericsson AB. All Rights Reserved.: SSH

1.6 Hardening

2 Reference Manual

Thessh application is an Erlang implementation of the Secure Shell Protocol (SSH) as defined by RFC 4250 - 4254.

Ericsson AB. All Rights Reserved.: SSH | 29

SSH

SSH

Application

Thessh applicationisanimplementation of the SSH protocol in Erlang. ssh offers API functionsto write customized
SSH clients and servers as well as making the Erlang shell available over SSH. An SFTP client, ssh_sft p, and
server, ssh_sf t pd, are also included.

DEPENDENCIES

The ssh application uses the applications public_key and crypto to handle public keys and encryption. Hence, these
applications must be loaded for the ssh application to work. The call ssh:start/O will do the necessary calls to
application:start/1,2 before it starts the ssh itself.

CONFIGURATION

The SSH application uses Configuration Parameters. Where to set them are described in config User's Guide with
SSH detailsin Configuration in SSH.

Some special configuration files from OpenSSH are a so used:

« known_host s

e authorized keys

* authorized_keys2

e id_dsa (supported but disabled by default)

e id_rsa (SHA1 sign/verify are supported but disabled by default from OTP-24)

e id_ecdsa

e id_ed25519

 id_ed448

e« ssh_host _dsa_key (supported but disabled by default)

 ssh_host _rsa_key (SHA1 sign/verify are supported but disabled by default from OTP-24)
e ssh_host _ecdsa_key

e ssh_host _ed25519 key

e ssh_host _ed448 key

By default, ssh looksfori d_*,known_host s,andaut hori zed_keys in~/ . ssh,andforthessh _host *_key

filesin/ et ¢/ ssh. Theselocations can be changed by theoptionsuser _di r andsyst em di r . More about where
to set them is described in Configuration in SSH.

Public key handling can also be customized through a callback module that implements the behaviors
ssh_client_key api and ssh_server_key api.

See also the default callback module documentation in ssh file.
Disabled public key algorithms can be enabled with the preferred_algorithms or modify_algorithms options. See

Example 9 in Configuring algorithms in SSH for a description.
Public Keys

i d_* arethe users private key files. Notice that the public key is part of the private key so the ssh application does
not usethei d_*. pub files. These are for the user's convenience when it is needed to convey the user's public key.

See ssh_filefor details.

30 | Ericsson AB. All Rights Reserved.: SSH

SSH

Known Hosts

The known_host s file contains a list of approved servers and their public keys. Once a server is listed, it can be
verified without user interaction.

See ssh_file for details.

Authorized Keys
Theaut hori zed_key filekeepstrack of the user's authorized public keys. The most common use of thisfileisto
let userslog in without entering their password, which is supported by the Erlang ssh daemon.

See ssh_filefor details.

Host Keys

RSA, DSA (if enabled), ECDSA, ED25519 and ED448 host keys are supported and are expected to be found in files
named ssh_host rsa key, ssh_host dsa_key, ssh_host ecdsa_key, ssh_host ed25519 key
andssh_host ed448 key.

See ssh_filefor details.

ERROR LOGGER AND EVENT HANDLERS

The ssh application uses the default OTP error logger to log unexpected errors or print information about special
events.

SUPPORTED SPECIFICATIONS AND STANDARDS
The supported SSH version is 2.0.

Algorithms

The actual set of algorithms may vary depending on which OpenSSL crypto library that is installed on the machine.
For the list on a particular installation, use the command ssh:default_algorithms/0. The user may override the
default algorithm configuration both on the server side and the client side. See the options preferred_algorithms and
modify_algorithms in the ssh:daemon/1,2,3 and ssh:connect/3,4 functions.

Supported agorithms are (in the default order):

Key exchange algorithms
e ecdh-sha2-nistp384
¢ ecdh-sha2-nistp521
¢ ecdh-sha2-nistp256
e diffie-hellman-group-exchange-sha256
o diffie-hellman-group16-shab12
e diffie-hellman-group18-sha512
e diffie-hellman-groupl4-sha256
e curve25519-sha256
e curve25519-sha256@libssh.org
e curve448-shab12

The following unsecure SHA1 algorithms are now disabled by default:
e (diffie-hellman-groupl4-shal)
e (diffie-hellman-group-exchange-shal)

Ericsson AB. All Rights Reserved.: SSH | 31

SSH

e (diffie-hellman-groupl-shal)

They can be enabled with the preferred algorithms or modify_algorithms options. Use for example
the Option value {nodi fy_al gorithms, [{append, [{kex,['diffie-hellnnan-groupl-
shal']}]}]1})

Public key algorithms

e ecdsa-sha2-nistp384
e ecdsa-sha2-nistp521
e ecdsa-sha2-nistp256

+ ssh-ed25519

+ ssh-ed448

e rsasha2-256

e rsasha2-512

The following unsecure SHA1 algorithms are supported but disabled by default:
e (ssh-dss)

© (sshrsa)

See Disabled public key algorithms can be enabled with the preferred_algorithms or modify_algorithms options.
See Example 9 in Configuring algorithms in SSH for a description.

MAC agorithms

e hmac-sha2-256-etm@openssh.com

e hmac-sha2-512-etm@openssh.com

e hmac-shal-etm@openssh.com

¢ hmac-sha2-256

e hmac-sha2-512

¢ hmac-shal

The following unsecure SHA1 algorithm is disabled by default:
¢ (hmac-shal-96)

It can be enabled with the preferred _algorithms or modify_algorithms options. Use for example the Option value
{modi fy_al gorithns, [{append, [{nmac,[' hmac-shal-96']1}1}]1})

Encryption algorithms (ciphers)

e chacha20-poly1305@openssh.com
e aes256-gcm@openssh.com

e @es256-ctr

e aesl92-ctr

e aesl28-gcm@openssh.com

e aesl28-ctr

e aes256-chc
e aesl92-chc
e aesl28-chc
e 3des-chc

* (AEAD_AES 128 GCM, not enabled per default)
* (AEAD_AES 256 GCM, not enabled per default)

Seethetext at the description of the rfc 5647 further down for moreinformation regarding AEAD_AES * GCM.

32| Ericsson AB. All Rights Reserved.: SSH

SSH

Following the internet de-facto standard, the cipher and mac algorithm AEAD_AES 128 GCM is selected when
the cipher aes128-gcm@openssh.com is negotiated. The cipher and mac algorithm AEAD_AES 256_GCM is
selected when the cipher aes256-gcm@openssh.com is negotiated.

Compression algorithms

* none
* zZlib@openssh.com
« zlib

Unicode support

Unicode filenames are supported if the emulator and the underlying OS support it. See section DESCRIPTION in the
file manual page in Kernel for information about this subject.

The shell and the cli both support unicode.

Rfcs
The following rfc:s are supported:
* RFC 4251, The Secure Shell (SSH) Protocol Architecture.
Except
e 9.4.6 Host-Based Authentication
e 9.5.2 Proxy Forwarding
e 9,53 X11 Forwarding
* RFC 4252, The Secure Shell (SSH) Authentication Protocol.
Except
e 9. Host-Based Authentication: "hostbased"
e RFC 4253, The Secure Shell (SSH) Transport Layer Protocol.
Except
e 8.1. diffie-hellman-groupl-shal
e 6.6. Public Key Algorithms
e ssh-dss
e sshrsa
They are disabled by default as they now are regarded insecure, but they can be enabled with the
preferred_algorithms or modify_algorithms options. See Example 8 (diffie-hellman-groupl-shal) and Example
9 (ssh-dss) in Configuring algorithmsin SSH for descriptions.
* RFC 4254, The Secure Shell (SSH) Connection Protocol.
Except
e 6.3. X11 Forwarding
e 7. TCP/IP Port Forwarding
* RFC 4256, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH).
Except
e numpronmpts > 1
e password changing

Ericsson AB. All Rights Reserved.: SSH | 33

href
href
href
href
href

SSH

» other identification methods than userid-password

* RFC 4419, Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol.
Except
« 4.1. diffie-hellman-group-exchange-shal

It is disabled by defaultas as it now is regarded insecure, but it can be enabled with the preferred_algorithms or
modify_algorithms options.

* RFC 4716, The Secure Shell (SSH) Public Key File Format.

 RFC 5647, AES Galois Counter Mode for the Secure Shell Transport Layer Protocol.

There is an ambiguity in the synchronized selection of cipher and mac algorithm. Thisis resolved by OpenSSH
in the ciphers aes128-gcm@openssh.com and aes256-gcm@openssh.com which are implemented. If the explicit
ciphers and macs AEAD_AES 128 GCM or AEAD_AES 256 GCM are needed, they could be enabled with
the options preferred algorithms or modify_algorithms.

If the client or the server is not Erlang/OTP, it is the users responsibility to check that other implementation
has the same interpretation of AEAD_AES * GCM asthe Erlang/OTP SSH before enabling them. The aes*-
gcm@openssh.com variants are always safe to use since they lack the ambiguity.

The second paragraph in section 5.1 is resolved as:

e |f thenegotiated cipher isAEAD_AES 128 GCM, the mac algorithm isset to AEAD_AES 128 GCM.
» |f the negotiated cipher iSAEAD_AES 256 _GCM, the mac algorithm is set to AEAD_AES 256 GCM.
e |f themac algorithm isAEAD_AES 128 GCM, thecipher isset to AEAD_AES 128 GCM.
« |If themac algorithm isAEAD_AES 256 _GCM, the cipher isset to AEAD_AES 256 GCM.

Thefirst rule that matches when read in order from the top is applied
* RFC 5656, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer.
Except
5. ECMQV Key Exchange
* 6.4 ECMQV Key Exchange and Verification Method Name
e 7.2. ECMQV Message Numbers
e 10.2. Recommended Curves

 RFC 6668, SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol

Comment: Defines hmac-sha2-256 and hmac-sha2-512
e Draft-ietf-curdle-ssh-kex-sha2 (work in progress), Key Exchange (KEX) Method Updates and
Recommendations for Secure Shell (SSH).
Deviations:
o« diffie-hellman-groupl-shal
e« diffie-hell man-group-exchange-shal
o« diffie-hellman-groupl4-shal
are not enabled by default as they now are regarded insecure, but are still supported and can be enabled with the
options preferred_algorithms or modify_algorithms.
« RFC 8332, Use of RSA Keyswith SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol.

34 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href
href
href
href

SSH

» RFC 8308, Extension Negotiation in the Secure Shell (SSH) Protocol.
Implemented are:

* The Extension Negotiation Mechanism
« Theextensionserver-si g-al gs

e Secure Shell (SSH) Key Exchange M ethod Using Curve25519 and Curved48
e RFC 8709 Ed25519 and Ed448 public key algorithms for the Secure Shell (SSH) protocol

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: SSH | 35

href
href
href

ssh

ssh

Erlang module

Thisisthe interface module for the SSH application. The Secure Shell (SSH) Protocol is a protocol for secure remote
login and other secure network services over an insecure network. See ssh(6) for details of supported RFCs, versions,
algorithms and unicode handling.

With the SSH application it is possible to start clients and to start daemons (servers).

Clients are started with connect/2, connect/3 or connect/4. They open an encrypted connection on top of TCP/IP. In
that encrypted connection one or more channels could be opened with ssh_connection:session_channel/2,4.

Each channel is an isolated "pipe" between a client-side process and a server-side process. Those process pairs could
handle for example file transfers (sftp) or remote command execution (shell, exec and/or cli). If a custom shell is
implemented, the user of the client could execute the special commands remotely. Note that the user is not necessarily
ahuman but probably a system interfacing the SSH app.

A server-side subssystem (channel) server is requested by the client with ssh_connection:subsystem/4.

A server (daemon) is started with daemon/1, daemon/2 or daemon/3. Possible channel handlers (subsystems) are
declared with the subsystem option when the daemon is started.

To just run a shell on a remote machine, there are functions that bundles the needed three steps needed into one:
shell/1,2,3. Similarly, to just open an sftp (file transfer) connection to a remote machine, the simplest way is to use
ssh_sftp:start_channel/1,2,3.

To write your own client channel handler, use the behaviour ssh_client_channel. For server channel handlers use
ssh_server_channel behaviour (replaces ssh_daemon_channel).

Both clients and daemons accepts options that controls the exact behaviour. Some options are common to both. The
three sets are called Client Options, Daemon Options and Common Options.

The descriptions of the options uses the Erlang Type Language with explaining text.

‘ The User's Guide has examples and a Getting Started section. ‘

Keys and files

A number of objects must be present for the SSH application to work. Those objects are per default stored infiles. The
default names, paths and file formats are the same as for OpenSSH. Keys could be generated with thessh- keygen
program from OpenSSH. See the User's Guide.

The paths could easily be changed by options: user _di r andsystem di r.

A completely different storage could be interfaced by writing call-back modules using the behaviours
ssh_client_key api and/or ssh_server_key api. A calback module is installed with the option key_cb to the client
and/or the daemon.

Daemons
The keys are by default stored in files:

* Mandatory: one or more Host key(s), both private and public. Default is to store them in the directory / et ¢/
sshinthefiles

e ssh_host _dsa_key andssh_host dsa_key. pub

36 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

e ssh_host_rsa_key andssh_host _rsa_key. pub
e ssh_host _ecdsa_key andssh_host ecdsa_key. pub

The host keys directory could be changed with the option syst em di r .
e Optional: one or more User's public key in case of publ i ckey authorization. Default is to store them
concatenated inthefile. ssh/ aut hori zed_keys inthe user's home directory.

The user keys directory could be changed with the optionuser _di r.

Clients
The keys and some other data are by default stored in filesin the directory . ssh in the user's home directory.
The directory could be changed with the optionuser _di r.

e Optional: alist of Host public key(s) for previously connected hosts. Thislist is handled by the SSH application
without any need of user assistance. The default isto storethemin thefile known_host s.

The host_accepting_client_options() are associated with thislist of keys.
e Optional: one or more User's private key(s) in case of publ i ckey authorization. The default files are
e id dsaandid _dsa.pub
e id_rsaandid_rsa.pub
e id_ecdsaandi d_ecdsa. pub

Data Types

Client Options

client options() = [client option()]

client option() =
ssh file:pubkey passphrase client options() |
host accepting client options() |
authentication client options() |
diffie hellman_group exchange client option() |
connect timeout client option() |
recv_ext info_client _option() |
opaque_client options() |
gen_tcp:connect_option() |
common_option()

Optionsfor clients. The individual options are further explained below or by following the hyperlinks.
Note that not every gen_tcp:connect_option() is accepted. See set_sock opts/2 for alist of prohibited options.

Also note that setting a gen_tcp:connect_option() could change the socket in a way that impacts the ssh client's
behaviour negatively. Y ou useit on your own risk.

host accepting client options() =
{silently accept hosts, accept hosts()} |
{user interaction, boolean()} |
{save accepted host, boolean()} |
{quiet mode, boolean()}

accept_hosts() =
boolean() |
accept callback() |

Ericsson AB. All Rights Reserved.: SSH | 37

ssh

{HashAlgoSpec :: fp digest alg(), accept callback()}
fp digest alg() = md5 | crypto:shal() | crypto:sha2()
accept callback() =

fun((PeerName :: string(), fingerprint()) -> boolean()) |
fun((PeerName :: string(),
Port :: inet:port number(),

fingerprint()) ->
boolean())
fingerprint() = string() | [string()]
silently_accept_hosts
Thisoption guidesthe connect function on how to act when the connected server presents a Host Key that the
client has not seen before. The default isto ask the user with a question on stdio of whether to accept or reject the

new Host Key. See the option user _di r for specifying the path to the file known_host s where previously
accepted Host Keys are recorded. See also the option key_cb for the general way to handle keys.

The option can be given in three different forms as seen above:
« Thevaueisabool ean() . Thevauet r ue will make the client accept any unknown Host Key without
any user interaction. The valuef al se preservesthe default behaviour of asking the user on stdio.

e Anaccept _cal |l back() will be called and the boolean return value t r ue will make the client accept
the Host Key. A return value of f al se will make the client to reject the Host Key and as a result the
connection will be closed. The arguments to the fun are;

e Peer Nan® - astring with the name or address of the remote host.
« FingerPrint -thefingerprint of the Host Key as hostkey fingerprint/1 calculatesit.

« Atuple{HashAl goSpec, accept_call back}.TheHashAl goSpec specifies which hash
algorithm shall be used to calculate the fingerprint used in the call of theaccept _cal | back() . The
HashALgoSpec iseither an atom or alist of atoms as the first argument in hostkey fingerprint/2. If itis
alist of hash algorithm names, the Fi nger Pri nt argument intheaccept _cal | back() will bealist
of fingerprintsin the same order as the corresponding name in the HashAl goSpec list.

user i nteraction

If f al se, disablestheclient to connect to the server if any user interaction is needed, such as accepting the server
to be added to the known_host s file, or supplying a password.

Even if user interaction is allowed it can be suppressed by other options, suchassi | ently_accept _hosts
and passwor d. However, those options are not always desirable to use from a security point of view.

Defaultstot r ue.
save_accept ed_host

If true, the client saves an accepted host key to avoid the accept question the next time the same host is
connected. If theoptionkey _cb isnot present, thekey issavedinthefile"known_hosts'. Seeoptionuser _di r
for the location of that file.

If f al se, thekey isnot saved and the key will still be unknown at the next access of the same host.
Defaultstot r ue
qui et _node
If t r ue, the client does not print anything on authorization.
Defaultstof al se

authentication client options() =

38| Ericsson AB. All Rights Reserved.: SSH

ssh

{user, string()} | {password, string()}
user

Provides the username. If this option is not given, ssh reads from the environment (LOGNAME or USER on
UNIX, USERNAME on Windows).

password

Provides a password for password authentication. If this option is not given, the user is asked for a password, if
the password authentication method is attempted.

diffie hellman_group exchange client option() =
{dh_gex_limits,
{Min :: integer() >= 1,
I :: integer() >=1,
Max :: integer() >= 1}}

Sets the three diffie-hellman-group-exchange parameters that guides the connected server in choosing a group. See
RFC 4419 for the details. The default valueis{ 1024, 6144, 8192}.

connect timeout client option() = {connect timeout, timeout()}

Sets a timeout on the transport layer connect time. For gen_t cp the time is in milli-seconds and the default value
isinfinity.

See the parameter Ti meout in connect/4 for atimeout of the negotiation phase.
recv_ext info client option() = {recv_ext info, boolean()}

Maketheclient tell the server that the client accepts extension negotiation, that is, includeext - i nf o- ¢ inthekexinit
message sent. See RFC 8308 for details and ssh(6) for alist of currently implemented extensions.

Default valueist r ue which is compatible with other implementations not supporting ext-info.

Daemon Options (Server Options)
daemon_options() = [daemon option()]
daemon_option() =
subsystem daemon option() |
shell daemon option() |
exec_daemon_option() |
ssh _cli daemon option() |
tcpip tunnel out daemon option() |
tcpip tunnel in daemon option() |
authentication daemon options() |
diffie hellman_group exchange daemon option() |
max_initial idle time daemon option() |
negotiation timeout daemon option() |
hello timeout daemon option() |
hardening daemon options() |
callbacks daemon options() |
send ext info daemon option() |
opaque_daemon_options() |
gen tcp:listen option() |
common_option()

Options for daemons. The individual options are further explained below or by following the hyperlinks.
Note that not every gen_tcp:listen_option() is accepted. See set_sock _opts/2 for alist of prohibited options.

Ericsson AB. All Rights Reserved.: SSH | 39

href
href

ssh

Also note that setting a gen_tcp:listen_option() could change the socket in a way that impacts the ssh deamon's
behaviour negatively. Y ou useit on your own risk.

subsystem daemon option() = {subsystems, subsystem specs()}

subsystem specs() = [subsystem spec()]

subsystem spec() = {Name :: string(), mod args()}

Defines a subsystem in the daemon.

Thesubsyst em nane isthe namethat aclient requests to start with for example ssh_connection:subsystem/4.

The channel _cal | back isthe module that implements the ssh_server _channel (replaces ssh_daemon_channel)
behaviour in the daemon. See the section Creating a Subsystem in the User's Guide for more information and an
example.

If the subsystems optionisnot present, thevalueof ssh_sft pd: subsyst em spec([]) isused. Thisenablesthe
sftp subsystem by default. The option can be set to the empty list if you do not want the daemon to run any subsystems.
shell daemon option() = {shell, shell spec()}
shell_spec() = mod_fun_args() | shell fun() | disabled
shell fun() = 'shell fun/1'() | 'shell fun/2'()
'shell fun/1'() = fun((User :: string()) -> pid())
'shell fun/2'() =
fun((User :: string(), PeerAddr :: inet:ip address()) -> pid())

Defines the read-eval-print loop used in a daemon when a shell is requested by the client. The default is to use the
Erlang shell: { shel |, start, []}

See the option exec- opti on for a description of how the daemon executes shell-requests and exec-requests
depending on the shell- and exec-options.
exec_daemon option() = {exec, exec spec()}
exec_spec() =
{direct, exec fun()} | disabled | deprecated exec opt()

exec_fun() = 'exec fun/1'() | 'exec fun/2'() | 'exec_fun/3'()
‘exec_fun/1'() = fun((Cmd :: string()) -> exec result())
'exec_fun/2'() =

fun((Cmd :: string(), User :: string()) -> exec result())

'exec_fun/3'() =
fun((Cmd :: string(),
User :: string(),
ClientAddr :: ip port()) ->
exec_result())
exec_result() =
{ok, Result :: term()} | {error, Reason :: term()}

This option changes how the daemon executes exec-requests from clients. The term in the return value is formatted to
astring if it isanon-string type. No trailing newline is added in the ok-case.

See the User's Guide section on One-Time Execution for examples.

Error texts are returned on channel-type 1 which usualy is piped to st derr on e.g Linux systems. Texts from a
successful execution are returned on channel-type 0 and will in similar manner be piped to st dout . The exit-status
code is set to O for success and 255 for errors. The exact results presented on the client side depends on the client
and the client's operating system.

40 | Ericsson AB. All Rights Reserved.: SSH

ssh

Incaseof the{di rect, exec_fun()} variant or no exec-option at al, al readsfrom st andar d_i nput will
be from the received data-events of type 0. Those are sent by the client. Similarly all writesto st andar d_out put

will be sent as data-events to the client. An OS shell client like the command 'ssh' will usually use stdin and stdout
for the user interface.

The option cooperates with the daemon-option shel | in the following way:
1. If neither theexec- opt i on nor theshel | - opti on ispresent:

The default Erlang evaluator is used both for exec and shell requests. The result is returned to the client.
2. If theexec_spec'svaueisdi sabl ed (theshel | - opt i on may or may not be present):

No exec-requests are executed but shell-requests are not affected, they follow theshel | _spec'svalue.

3. If theexec- opt i on ispresent and theexec_spec vaue=/=di sabl ed (theshel | - opti on may or may
not be present):

Theexec_spec fun() iscaled with the same number of parameters as the arity of the fun, and the result is
returned to the client. Shell-requests are not affected, they follow the shel | _spec'svalue.

4.1f theexec- opti on isabsent, and theshel | - opt i on is present with the default Erlang shell asthe
shel | _spec'svalue:

The default Erlang evaluator is used both for exec and shell requests. The result is returned to the client.

5. If theexec- opt i on isabsent, and theshel | - opti on is present with avalue that is neither the default
Erlang shell nor the value di sabl ed:

The exec-request is not evaluated and an error message is returned to the client. Shell-requests are executed
according to the value of theshel | _spec.

6. If theexec- opti on isabsent, and theshel | _spec'svaueisdi sabl ed:
Exec requests are executed by the default shell, but shell-requests are not executed.

If acustom CLI isinstaled (seethe option ssh_cl i) the rules above are replaced by thoose implied by the custom
CLI.

Theexec- opt i on has existed for along time but has not previously been documented. The old definition and
behaviour are retained but obey the rules 1-6 above if conflicting. The old and undocumented style should not be
used in new programs.

deprecated exec opt() = function() | mod fun args()

Old-style exec specification that are kept for compatibility, but should not be used in new programs

ssh _cli daemon option() = {ssh cli, mod args() | no cli}

Provides your own CLI implementation in a daemon.

It isachannel callback module that implements a shell and command execution. The shell's read-eval-print loop can

be customized, using the option shel | . This means less work than implementing an own CLI channdl. If ssh_cl i
issettono_cl i, theCLI channelslikeshel | and exec are disabled and only subsystem channels are allowed.

authentication daemon options() =
ssh file:system dir daemon option() |
{auth method kb interactive data, prompt texts()} |
{user passwords, [{UserName :: string(), Pwd :: string()}I1} |
{pk check user, boolean()} |
{password, string()} |

Ericsson AB. All Rights Reserved.: SSH | 41

ssh

{pwdfun, pwdfun 2() | pwdfun 4()} |
{no_auth needed, boolean()}
prompt texts() =
kb int tuple() | kb _int fun 3() | kb_int fun 4()
kb int tuple() =
{Name :: string(),
Instruction :: string(),
Prompt :: string(),
Echo :: boolean()}
kb int fun 3() =
fun((Peer :: ip port(), User :: string(), Service :: string()) ->
kb int tuple())
kb int fun 4() =
fun((Peer :: ip port(),
User :: string(),
Service :: string(),
State :: any()) ->
kb int tuple())
pwdfun 2() =
fun((User :: string(), Password :: string() | pubkey) ->
boolean())
pwdfun 4() =
fun((User :: string(),
Password :: string() | pubkey,
PeerAddress :: ip port(),
State :: any()) ->
boolean() |
disconnect |
{boolean(), NewState :: any()})

aut h_met hod_kb_i nteractive_data

Sets the text strings that the daemon sends to the client for presentation to the user when using keyboar d-
i nteracti ve authentication.

If the fun/3 or fun/4 isused, it is called when the actual authentication occurs and may therefore return dynamic
data like time, remote ip etc.

The parameter Echo guides the client about need to hide the password.

The default value is. {auth_nethod_kb_interactive data, {"SSH server", "Enter
password for \""++User++"\"" "password: ", false}>
user _passwords

Provides passwords for password authentication. The passwords are used when someone tries to connect to
the server and public key user-authentication fails. The option provides a list of valid usernames and the
corresponding passwords.

Notethat thisisvery insecure dueto the plain-text passwords; it isintended for test purposes. Usethe pwdf un
option to handle the password checking instead.

42 | Ericsson AB. All Rights Reserved.: SSH

ssh

pk_check_user

Enables checking of the client's user name in the server when doing public key authentication. It is disabled by
default.

Theterm "user” is used differently in OpenSSH and SSH in Erlang/OTP: see more in the User's Guide.

If the option is enabled, and no pwdf un is present, the user name must present in the user_passwords for the
check to succeed but the value of the password is not checked.

In case of apwdf un checking the user, the atom pubkey is put in the password argument.
password

Provides aglobal password that authenticates any user.

Intended to facilitate testing.

From a security perspective this option makes the server very vulnerable.

pwdf un with pwdf un_4()

Providesafunction for password validation. Thiscould used for calling an external system or handling passwords
stored as hash values.

This fun can aso be used to make delays in authentication tries for example by calling timer:sleep/1.

To facilitate for instance counting of failed tries, the St at e variable could be used. This state is per connection
only. Thefirst time the pwdfun is called for a connection, the St at e variable has the value undef i ned.

The fun should return:

e trueif theuser and passwordisvalid
« fal seif theuser or passwordisinvalid

e disconnect ifaSSH_MSG_DISCONNECT message should be sent immediately. It will be followed
by aclose of the underlying tcp connection.

e {true, NewState:any()} if theuser and passwordisvalid
« {false, NewsState:any()} iftheuseror passwordisinvalid

A third usage isto block login attempts from a missbehaving peer. The St at e described above can be used for
this. Thereturn value di sconnect isuseful for this.

In case of the pk_check_user is set, the atom pubkey is put in the password argument when validating a
public key login. The pwdfun is then responsible to check that the user name is valid.

pwdf un with pwdf un_2()
Providesafunction for password validation. Thisfunctioniscalled with user and password as strings, and returns:

e trueif theuser and passwordisvalid
« fal seif theuser or passwordisinvalid

In case of the pk_check_user is set, the atom pubkey is put in the password argument when validating a
public key login. The pwdfun is then responsible to check that the user name is valid.

Thisvariant is kept for compatibility.
no_aut h_needed
If t r ue, aclient is authenticated without any need of providing any password or key.
Thisoption is only intended for very special applications due to the high risk of accepting any connecting client.

Ericsson AB. All Rights Reserved.: SSH | 43

ssh

The default valueisf al se
diffie hellman group exchange daemon option() =
{dh_gex_groups,
[explicit group()] |
explicit group file() |
ssh moduli file()} |
{dh_gex limits, {Min :: integer() >= 1, Max :: integer() >= 1}}
explicit group() =
{Size :: integer() >= 1,
G :: integer() >= 1,
P :: integer() >= 1}
explicit group file() = {file, string()}
ssh moduli file() = {ssh moduli file, string()}
dh_gex_groups
Defines the groups the server may choose among when diffie-hellman-group-exchange is negotiated. See RFC
4419 for details. The three variants of this option are:
{Si ze=i nteger (), Gsi nteger(), P=i nteger ()}
The groups are given explicitly in thislist. There may be several elementswith thesame Si ze. Insuch a
case, the server will choose one randomly in the negotiated Size.
{file,filenanme()}
The file must have one or more three-tuples{ Si ze=i nt eger (), G=i nt eger (), P=i nt eger ()}
terminated by adot. Thefileis read when the daemon starts.
{ssh_noduli _file,filename()}
The file must be in ssh-keygen moduli file format. Thefile is read when the daemon starts.

The default list is fetched from the public_key application.
dh_gex_limts

Limits what a client can ask for in diffie-hellman-group-exchange. The limits will be { MaxUsed =
m n(Maxd i ent, Max), M nUsed = max(M nC i ent, M n)} whereMaxC i ent andM nCl i ent
are the values proposed by a connecting client.

Thedefault valueis{ 0, i nfini ty}.
If MaxUsed < M nUsed inakey exchange, it will fail with a disconnect.
See RFC 4419 for the function of the Max and Min values.
hello timeout daemon option() = {hello timeout, timeout()}

Maximum time in milliseconds for the first part of the ssh session setup, the hello message exchange. Defaults to
30000 ms (30 seconds). If the client fails to send the first message within this time, the connection is closed.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

negotiation timeout daemon option() =
{negotiation timeout, timeout()}

Maximum time in milliseconds for the authentication negotiation. Defaults to 120000 ms (2 minutes). If the client
failsto log in within thistime, the connection is closed.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

max_initial idle time_daemon_option() =

44 | Ericsson AB. All Rights Reserved.: SSH

href
href
href

ssh

{max_initial idle time, timeout()}

Maximum time in milliseconds for the first channel start after completion of the authentication negotiation. Defaults
toinfinity.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

hardening daemon options() =
{max_sessions, integer() >= 1} |
{max_channels, integer() >= 1} |
{parallel login, boolean()} |
{minimal remote max packet size, integer() >= 1}

For more information about hardening, see the Hardening section in the User's Guide chapter.
nmax_sessi ons

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessionsthat are being authorized. Thus, if set to N, and N clients have connected but not started the login process,
connection attempt N+1 is aborted. If N connections are authenticated and still logged in, no more logins are
accepted until one of the existing ones log out.

The counter isper listening port. Thus, if two daemons are started, onewith { max_sessi ons, N} andtheother
with { max_sessi ons, M, intotal N+Mconnections are accepted for the whole ssh application.

Noticethat if par al | el _I ogi nisf al se, only one client at atime can be in the authentication phase.
By default, this option is not set. This means that the number is not limited.
max_channel s

The maximum number of channels with active remote subsystem that are accepted for each connection to this
daemon

By default, this option is not set. This means that the number is not limited.
paral l el _| ogin

If set to false (the default value), only oneloginis handled at atime. If set to true, an unlimited number of login
attempts are allowed simultaneously.

If the max_sessi ons option isset to Nand paral | el _| ogi n issettotrue, the maximum number of
simultaneous login attempts at any time is limited to N- K, where K is the number of authenticated connections
present at this daemon.

Do not enable par al | el _| ogi ns without protecting the server by other means, for example, by the
max_sessi ons optionor afirewall configuration. If settot r ue, thereisno protection against DOS attacks.

m ni mal _renot e_nax_packet _si ze

Theleast maximum packet size that the daemon will accept in channel open requests from the client. The default
valueisO.

callbacks daemon options() =
{failfun,
fun((User :: string(),
PeerAddress :: inet:ip address(),
Reason :: term()) ->
term())} |
{connectfun,

Ericsson AB. All Rights Reserved.: SSH | 45

ssh

fun((User :: string(),
PeerAddress :: inet:ip address(),
Method :: string()) ->
term())}

connect fun

Provides afun to implement your own logging when a user authenticates to the server.
failfun

Provides afun to implement your own logging when a user fails to authenticate.
send ext info daemon option() = {send ext info, boolean()}

Make the server (daemon) tell the client that the server accepts extension negatiation, that is, include ext - i nf o-s
in the kexinit message sent. See RFC 8308 for details and ssh(6) for alist of currently implemented extensions.

Default valueist r ue which is compatible with other implementations not supporting ext-info.
tcpip tunnel in daemon option() = {tcpip tunnel in, boolean()}
Enables(t r ue) or disables (f al se) the possibility to tunnel a TCP/IP connection in to aserver. Disabled per default.

tcpip_tunnel out daemon option() =
{tcpip_tunnel out, boolean()}

Enables(t r ue) or disables(f al se) thepossibility totunnel a TCP/IP connection out of aserver. Disabled per default.

Options common to clients and daemons
common_options() = [common option()]
common_option() =
ssh file:user dir common option() |
profile common option() |
max_idle time common option() |
max_log item len common option() |
key cb common option() |
disconnectfun_common option() |
unexpectedfun common option() |
ssh _msg debug fun common option() |
rekey limit common option() |
id string common option() |
pref public key algs common option() |
preferred algorithms common option() |
modify algorithms common option() |
auth _methods common option() |
inet common option() |
fd _common option()

The options above can be used both in clients and in daemons (servers). They are further explained below.
profile common option() = {profile, atom()}

Used together with i p- addr ess and port to uniquely identify a ssh daemon. This can be useful in a virtualized
environment, where there can be more that one server that has the samei p- addr ess and por t . If thisproperty is
not explicitly set, it is assumed that thethei p- addr ess and por t uniquely identifies the SSH daemon.

max_idle time common option() = {idle time, timeout()}
Sets atime-out on a connection when no channels are open. Defaultsto i nf i ni t y. The unit is milliseconds.

46 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

The timeout is not active until channels are started, so it does not limit the time from the connection creation to the
first channel opening.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

max_log _item len common option() =
{max_log item len, limit bytes()}

Setsalimit for the size of alogged item excluding a header. The unit is bytes and the value defaults to 500.
rekey limit common option() =

{rekey limit,

Bytes ::
limit bytes() |

{Minutes :: limit time(), Bytes :: limit bytes()}}

limit bytes() = integer() >= 0 | infinity
limit time() = integer() >= 1 | infinity
Setsthe limit when rekeying is to be initiated. Both the max time and max amount of data could be configured:
« {Mnutes, Bytes} initiaterekeyingwhen any of the limits are reached.
* Byt es initiate rekeying when Byt es number of bytes are transferred, or at latest after one hour.
When arekeying is done, both the timer and the byte counter are restarted. Defaults to one hour and one GByte.

If M nutes issettoinfinity, norekeying will ever occur due to that max time has passed. Setting Byt es
to i nfinity will inhibit rekeying after a certain amount of data has been transferred. If the option value is set
to{infinity, infinity},norekeyingwill beinitiated. Note that rekeying initiated by the peer will still be
performed.

key cb _common option() =
{key cb,
Module :: atom() | {Module :: atom(), Opts :: [term()]}}

Module implementing the behaviour ssh client_key api and/or ssh_server_key api. Can be used to customize the
handling of public keys. If callback options are provided along with the module name, they are made available to the
callback module viathe options passed to it under the key 'key _cb_private'.

The Opt s defaultsto[] when only the Modul e is specified.
The default value of thisoptionis{ssh_file, []}. Seeasothemanpage of ssh file.
A call to the call-back function F will be

Module:F(..., [{key cb private,Opts}|UserOptions])

where . .. are arguments to F as in ssh_client_key api and/or ssh_server key api. The User Opt i ons are the
options given to ssh:connect, ssh:shell or ssh:daemon.

pref public key algs common option() =
{pref public key algs, [pubkey alg()]1}

List of user (client) public key algorithmsto try to use.
The default valueisthe publ i c_key entry in thelist returned by ssh:default_algorithms/0.

If there is no public key of a specified type available, the corresponding entry is ignored. Note that the available set
is dependent on the underlying cryptolib and current user's public keys.

See also the option user _di r for specifying the path to the user's keys.
disconnectfun common option() =

Ericsson AB. All Rights Reserved.: SSH | 47

ssh

{disconnectfun, fun((Reason :: term()) -> void | any())}
Provides a fun to implement your own logging or other handling at disconnects.

unexpectedfun common option() =
{unexpectedfun,
fun((Message :: term(), {Host :: term(), Port :: term()}) ->
report | skip)}

Provides afun to implement your own logging or other action when an unexpected message arrives. If the fun returns
r eport theusua inforeportisissued but if ski p isreturned no report is generated.

ssh msg debug fun common option() =
{ssh msg debug fun,
fun((ssh:connection ref(),
AlwaysDisplay :: boolean(),
Msg :: binary(),
LanguageTag :: binary()) ->
any())}

Provide a fun to implement your own logging of the SSH message SSH_MSG_DEBUG. The last three parameters
are from the message, see RFC 4253, section 11.3. Theconnect i on_r ef () isthereferenceto the connection on
which the message arrived. The return value from the fun is not checked.

The default behaviour is ignore the message. To get a printout for each message with Al waysDi spl ay = true,
usefor example{ ssh_nsg_debug_fun, fun(_,true,M)-> io:format("DEBUG ~p~n", [M)
end}

id string common option() =
{id string,
string() |
random |
{random, Nmin :: integer() >= 1, Nmax :: integer() >= 1}}

The string the daemon will present to a connecting peer initially. The default value is "Erlang/VSN" where VSN is
the ssh application version number.

The valuer andomwill cause arandom string to be created at each connection attempt. Thisisto make it abit more
difficult for amalicious peer to find the ssh software brand and version.

Thevalue{random Nnmi n, Nmax} will make arandom string with at least Nmi n characters and at most Nnmax
characters.

preferred algorithms common option() =
{preferred algorithms, algs list()}
algs list() = [alg entry()]
alg entry() =
{kex, [kex_alg()1} |
{public_key, [pubkey alg()]} |
{cipher, double algs(cipher alg())} |
{mac, double algs(mac alg())} |
{compression, double algs(compression alg())}
kex alg() =
'diffie-hellman-group-exchange-shal' |
'diffie-hellman-group-exchange-sha256' |
‘diffie-hellman-groupl-shal' | 'diffie-hellman-groupl4-shal' |
‘diffie-hellman-groupl4-sha256' |
‘diffie-hellman-groupl6-sha512' |

48 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

'diffie-hellman-groupl8-sha512' | 'curve25519-sha256"' |
'curve25519-sha256@libssh.org' | 'curve448-sha512' |
'ecdh-sha2-nistp256' | 'ecdh-sha2-nistp384' |

'ecdh-sha2-nistp521"
pubkey alg() =

'ecdsa-sha2-nistp256' | 'ecdsa-sha2-nistp384' |
'ecdsa-sha2-nistp521' | 'ssh-ed25519' | 'ssh-ed448' |
‘rsa-sha2-256' | 'rsa-sha2-512' | 'ssh-dss' | 'ssh-rsa'
cipher _alg() =
‘3des-cbc' | 'AEAD_AES 128 GCM' | 'AEAD_AES 256 GCM' |
'aes128-cbc' | 'aesl28-ctr' | 'aesl28-gcm@openssh.com' |
'aesl192-ctr' | 'aesl92-cbc' | 'aes256-cbc' | 'aes256-ctr' |
'aes256-gcm@openssh.com' | 'chacha20-polyl305@openssh.com’
mac_alg() =
"AEAD AES 128 GCM' | 'AEAD AES 256 GCM' | 'hmac-shal' |
"hmac-shal-etm@openssh.com' | 'hmac-shal-96"' |
"hmac-sha2-256"' | 'hmac-sha2-512"' |

"hmac-sha2-256-etm@openssh.com' |
"hmac-sha2-512-etm@openssh.com'

compression alg() = none | zlib | 'zlib@openssh.com'

double algs(AlgType) =
[{client2server, [AlgTypel} | {server2client, [AlgTypell}] |
[AlgType]

List of algorithms to use in the algorithm negotiation. The default al gs_Ii st () can be obtained from
default_algorithms/0.

If an alg_entry() ismissing in the algs list(), the default value is used for that entry.
Here is an example of this option:

{preferred algorithms,

[{public key,['ssh-rsa', 'ssh-dss']},

{cipher, [{client2server,['aes128-ctr']},
{server2client,['aes128-cbhc', '3des-cbc']1}1},

{mac, ['hmac-sha2-256"', 'hmac-shal']},

{compression, [none,zlib]}

1

)

The example specifies different algorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) is implicit but
public_key is set explicitly.

For background and more examples see the User's Guide.

If an algorithm name occurs more than once in alist, the behaviour is undefined. The tags in the property lists are
also assumed to occur a most one time.

Changing the values can make a connection less secure. Do not change unless you know exactly what you are
doing. If you do not understand the val ues then you are not supposed to change them.

modify algorithms common option() =

Ericsson AB. All Rights Reserved.: SSH | 49

ssh

{modify algorithms, modify algs list()}
modify algs list() =

[{append, algs list()} |

{prepend, algs list()} |

{rm, algs list()}]

Modifies the list of algorithms to use in the algorithm negotiation. The modifications are