AOMedia AV1 Codec
av1_common_int.h
1/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15#include "config/aom_config.h"
16#include "config/av1_rtcd.h"
17
18#include "aom/internal/aom_codec_internal.h"
19#include "aom_util/aom_thread.h"
20#include "av1/common/alloccommon.h"
21#include "av1/common/av1_loopfilter.h"
22#include "av1/common/entropy.h"
23#include "av1/common/entropymode.h"
24#include "av1/common/entropymv.h"
25#include "av1/common/enums.h"
26#include "av1/common/frame_buffers.h"
27#include "av1/common/mv.h"
28#include "av1/common/quant_common.h"
30#include "av1/common/tile_common.h"
31#include "av1/common/timing.h"
32#include "aom_dsp/grain_params.h"
33#include "aom_dsp/grain_table.h"
34#include "aom_dsp/odintrin.h"
35#ifdef __cplusplus
36extern "C" {
37#endif
38
39#if defined(__clang__) && defined(__has_warning)
40#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
41#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
42#endif
43#elif defined(__GNUC__) && __GNUC__ >= 7
44#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
45#endif
46
47#ifndef AOM_FALLTHROUGH_INTENDED
48#define AOM_FALLTHROUGH_INTENDED \
49 do { \
50 } while (0)
51#endif
52
53#define CDEF_MAX_STRENGTHS 16
54
55/* Constant values while waiting for the sequence header */
56#define FRAME_ID_LENGTH 15
57#define DELTA_FRAME_ID_LENGTH 14
58
59#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
60// Extra frame context which is always kept at default values
61#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
62#define PRIMARY_REF_BITS 3
63#define PRIMARY_REF_NONE 7
64
65#define NUM_PING_PONG_BUFFERS 2
66
67#define MAX_NUM_TEMPORAL_LAYERS 8
68#define MAX_NUM_SPATIAL_LAYERS 4
69/* clang-format off */
70// clang-format seems to think this is a pointer dereference and not a
71// multiplication.
72#define MAX_NUM_OPERATING_POINTS \
73 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
74/* clang-format on */
75
76// TODO(jingning): Turning this on to set up transform coefficient
77// processing timer.
78#define TXCOEFF_TIMER 0
79#define TXCOEFF_COST_TIMER 0
80
83enum {
84 SINGLE_REFERENCE = 0,
85 COMPOUND_REFERENCE = 1,
86 REFERENCE_MODE_SELECT = 2,
87 REFERENCE_MODES = 3,
88} UENUM1BYTE(REFERENCE_MODE);
89
90enum {
94 REFRESH_FRAME_CONTEXT_DISABLED,
99 REFRESH_FRAME_CONTEXT_BACKWARD,
100} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
101
102#define MFMV_STACK_SIZE 3
103typedef struct {
104 int_mv mfmv0;
105 uint8_t ref_frame_offset;
106} TPL_MV_REF;
107
108typedef struct {
109 int_mv mv;
110 MV_REFERENCE_FRAME ref_frame;
111} MV_REF;
112
113typedef struct RefCntBuffer {
114 // For a RefCntBuffer, the following are reference-holding variables:
115 // - cm->ref_frame_map[]
116 // - cm->cur_frame
117 // - cm->scaled_ref_buf[] (encoder only)
118 // - pbi->output_frame_index[] (decoder only)
119 // With that definition, 'ref_count' is the number of reference-holding
120 // variables that are currently referencing this buffer.
121 // For example:
122 // - suppose this buffer is at index 'k' in the buffer pool, and
123 // - Total 'n' of the variables / array elements above have value 'k' (that
124 // is, they are pointing to buffer at index 'k').
125 // Then, pool->frame_bufs[k].ref_count = n.
126 int ref_count;
127
128 unsigned int order_hint;
129 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
130
131 // These variables are used only in encoder and compare the absolute
132 // display order hint to compute the relative distance and overcome
133 // the limitation of get_relative_dist() which returns incorrect
134 // distance when a very old frame is used as a reference.
135 unsigned int display_order_hint;
136 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
137 // Frame's level within the hierarchical structure.
138 unsigned int pyramid_level;
139 MV_REF *mvs;
140 uint8_t *seg_map;
141 struct segmentation seg;
142 int mi_rows;
143 int mi_cols;
144 // Width and height give the size of the buffer (before any upscaling, unlike
145 // the sizes that can be derived from the buf structure)
146 int width;
147 int height;
148 WarpedMotionParams global_motion[REF_FRAMES];
149 int showable_frame; // frame can be used as show existing frame in future
150 uint8_t film_grain_params_present;
151 aom_film_grain_t film_grain_params;
152 aom_codec_frame_buffer_t raw_frame_buffer;
154 int temporal_id; // Temporal layer ID of the frame
155 int spatial_id; // Spatial layer ID of the frame
156 FRAME_TYPE frame_type;
157
158 // This is only used in the encoder but needs to be indexed per ref frame
159 // so it's extremely convenient to keep it here.
160 int interp_filter_selected[SWITCHABLE];
161
162 // Inter frame reference frame delta for loop filter
163 int8_t ref_deltas[REF_FRAMES];
164
165 // 0 = ZERO_MV, MV
166 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
167
168 FRAME_CONTEXT frame_context;
169} RefCntBuffer;
170
171typedef struct BufferPool {
172// Protect BufferPool from being accessed by several FrameWorkers at
173// the same time during frame parallel decode.
174// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
175// TODO(wtc): Remove this. See
176// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
177#if CONFIG_MULTITHREAD
178 pthread_mutex_t pool_mutex;
179#endif
180
181 // Private data associated with the frame buffer callbacks.
182 void *cb_priv;
183
186
187 RefCntBuffer frame_bufs[FRAME_BUFFERS];
188
189 // Frame buffers allocated internally by the codec.
190 InternalFrameBufferList int_frame_buffers;
191} BufferPool;
192
196typedef struct {
198 uint16_t *colbuf[MAX_MB_PLANE];
200 uint16_t *linebuf[MAX_MB_PLANE];
202 uint16_t *srcbuf;
204 size_t allocated_colbuf_size[MAX_MB_PLANE];
206 size_t allocated_linebuf_size[MAX_MB_PLANE];
214 int cdef_strengths[CDEF_MAX_STRENGTHS];
216 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
223} CdefInfo;
224
227typedef struct {
228 int delta_q_present_flag;
229 // Resolution of delta quant
230 int delta_q_res;
231 int delta_lf_present_flag;
232 // Resolution of delta lf level
233 int delta_lf_res;
234 // This is a flag for number of deltas of loop filter level
235 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
236 // 1: use separate deltas for each filter level
237 int delta_lf_multi;
238} DeltaQInfo;
239
240typedef struct {
241 int enable_order_hint; // 0 - disable order hint, and related tools
242 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
243 // frame_sign_bias
244 // if 0, enable_dist_wtd_comp and
245 // enable_ref_frame_mvs must be set as 0.
246 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
247 // 1 - enable it
248 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
249 // 1 - enable it
250} OrderHintInfo;
251
252// Sequence header structure.
253// Note: All syntax elements of sequence_header_obu that need to be
254// bit-identical across multiple sequence headers must be part of this struct,
255// so that consistency is checked by are_seq_headers_consistent() function.
256// One exception is the last member 'op_params' that is ignored by
257// are_seq_headers_consistent() function.
258typedef struct SequenceHeader {
259 int num_bits_width;
260 int num_bits_height;
261 int max_frame_width;
262 int max_frame_height;
263 // Whether current and reference frame IDs are signaled in the bitstream.
264 // Frame id numbers are additional information that do not affect the
265 // decoding process, but provide decoders with a way of detecting missing
266 // reference frames so that appropriate action can be taken.
267 uint8_t frame_id_numbers_present_flag;
268 int frame_id_length;
269 int delta_frame_id_length;
270 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
271 int mib_size; // Size of the superblock in units of MI blocks
272 int mib_size_log2; // Log 2 of above.
273
274 OrderHintInfo order_hint_info;
275
276 uint8_t force_screen_content_tools; // 0 - force off
277 // 1 - force on
278 // 2 - adaptive
279 uint8_t still_picture; // Video is a single frame still picture
280 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
281 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
282 // 1 - force to integer
283 // 2 - adaptive
284 uint8_t enable_filter_intra; // enables/disables filterintra
285 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
286 uint8_t enable_interintra_compound; // enables/disables interintra_compound
287 uint8_t enable_masked_compound; // enables/disables masked compound
288 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
289 // 1 - enable vert/horz filter selection
290 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
291 // 1 - enable warp for the sequence
292 uint8_t enable_superres; // 0 - Disable superres for the sequence
293 // and no frame level superres flag
294 // 1 - Enable superres for the sequence
295 // enable per-frame superres flag
296 uint8_t enable_cdef; // To turn on/off CDEF
297 uint8_t enable_restoration; // To turn on/off loop restoration
298 BITSTREAM_PROFILE profile;
299
300 // Color config.
301 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
302 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
303 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
304 uint8_t monochrome; // Monochorme video
305 aom_color_primaries_t color_primaries;
306 aom_transfer_characteristics_t transfer_characteristics;
307 aom_matrix_coefficients_t matrix_coefficients;
308 int color_range;
309 int subsampling_x; // Chroma subsampling for x
310 int subsampling_y; // Chroma subsampling for y
311 aom_chroma_sample_position_t chroma_sample_position;
312 uint8_t separate_uv_delta_q;
313 uint8_t film_grain_params_present;
314
315 // Operating point info.
316 int operating_points_cnt_minus_1;
317 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
318 int timing_info_present;
319 aom_timing_info_t timing_info;
320 uint8_t decoder_model_info_present_flag;
321 aom_dec_model_info_t decoder_model_info;
322 uint8_t display_model_info_present_flag;
323 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
324 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
325
326 // IMPORTANT: the op_params member must be at the end of the struct so that
327 // are_seq_headers_consistent() can be implemented with a memcmp() call.
328 // TODO(urvang): We probably don't need the +1 here.
329 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
330} SequenceHeader;
331
332typedef struct {
333 int skip_mode_allowed;
334 int skip_mode_flag;
335 int ref_frame_idx_0;
336 int ref_frame_idx_1;
337} SkipModeInfo;
338
339typedef struct {
340 FRAME_TYPE frame_type;
341 REFERENCE_MODE reference_mode;
342
343 unsigned int order_hint;
344 unsigned int display_order_hint;
345 // Frame's level within the hierarchical structure.
346 unsigned int pyramid_level;
347 unsigned int frame_number;
348 SkipModeInfo skip_mode_info;
349 int refresh_frame_flags; // Which ref frames are overwritten by this frame
350 int frame_refs_short_signaling;
351} CurrentFrame;
352
358typedef struct {
406 TX_MODE tx_mode;
407 InterpFilter interp_filter;
421 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
423
427typedef struct CommonTileParams {
428 int cols;
429 int rows;
437
444
451 int width;
452 int height;
479 int col_start_sb[MAX_TILE_COLS + 1];
484 int row_start_sb[MAX_TILE_ROWS + 1];
488 unsigned int large_scale;
496
512
516 int MBs;
517
528
550 BLOCK_SIZE mi_alloc_bsize;
551
568
575 TX_TYPE *tx_type_map;
576
585 void (*free_mi)(struct CommonModeInfoParams *mi_params);
590 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
600 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
601 int height, BLOCK_SIZE min_partition_size);
603};
604
614
620
629
640
641 /*
642 * Note: The qindex per superblock may have a delta from the qindex obtained
643 * at frame level from parameters above, based on 'cm->delta_q_info'.
644 */
645
653 int16_t y_dequant_QTX[MAX_SEGMENTS][2];
654 int16_t u_dequant_QTX[MAX_SEGMENTS][2];
655 int16_t v_dequant_QTX[MAX_SEGMENTS][2];
665 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
669 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
679 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
683 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
687 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
707};
708
709typedef struct CommonContexts CommonContexts;
718 PARTITION_CONTEXT **partition;
719
728 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
729
736 TXFM_CONTEXT **txfm;
737
745};
746
750typedef struct AV1Common {
754 CurrentFrame current_frame;
758 struct aom_internal_error_info *error;
759
775 int width;
776 int height;
808
815 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
822
826 RefCntBuffer *prev_frame;
827
832 RefCntBuffer *cur_frame;
833
854 int remapped_ref_idx[REF_FRAMES];
855
861 struct scale_factors sf_identity;
862
869 struct scale_factors ref_scale_factors[REF_FRAMES];
870
878 RefCntBuffer *ref_frame_map[REF_FRAMES];
879
886
894
901
906
911
912#if CONFIG_ENTROPY_STATS
916 int coef_cdf_category;
917#endif // CONFIG_ENTROPY_STATS
918
923
927 struct segmentation seg;
928
933
938 loop_filter_info_n lf_info;
939 struct loopfilter lf;
946 RestorationInfo rst_info[MAX_MB_PLANE];
947 int32_t *rst_tmpbuf;
948 RestorationLineBuffers *rlbs;
956
960 aom_film_grain_t film_grain_params;
961
965 DeltaQInfo delta_q_info;
966
970 WarpedMotionParams global_motion[REF_FRAMES];
971
976 SequenceHeader *seq_params;
977
981 FRAME_CONTEXT *fc;
987 FRAME_CONTEXT *default_frame_context;
988
993
997 BufferPool *buffer_pool;
998
1006
1012 int ref_frame_id[REF_FRAMES];
1022 TPL_MV_REF *tpl_mvs;
1031 int ref_frame_sign_bias[REF_FRAMES];
1037 int8_t ref_frame_side[REF_FRAMES];
1038
1044
1050
1051#if TXCOEFF_TIMER
1052 int64_t cum_txcoeff_timer;
1053 int64_t txcoeff_timer;
1054 int txb_count;
1055#endif // TXCOEFF_TIMER
1056
1057#if TXCOEFF_COST_TIMER
1058 int64_t cum_txcoeff_cost_timer;
1059 int64_t txcoeff_cost_timer;
1060 int64_t txcoeff_cost_count;
1061#endif // TXCOEFF_COST_TIMER
1062} AV1_COMMON;
1063
1066// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1067// frame reference count.
1068static void lock_buffer_pool(BufferPool *const pool) {
1069#if CONFIG_MULTITHREAD
1070 pthread_mutex_lock(&pool->pool_mutex);
1071#else
1072 (void)pool;
1073#endif
1074}
1075
1076static void unlock_buffer_pool(BufferPool *const pool) {
1077#if CONFIG_MULTITHREAD
1078 pthread_mutex_unlock(&pool->pool_mutex);
1079#else
1080 (void)pool;
1081#endif
1082}
1083
1084static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1085 if (index < 0 || index >= REF_FRAMES) return NULL;
1086 if (cm->ref_frame_map[index] == NULL) return NULL;
1087 return &cm->ref_frame_map[index]->buf;
1088}
1089
1090static INLINE int get_free_fb(AV1_COMMON *cm) {
1091 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1092 int i;
1093
1094 lock_buffer_pool(cm->buffer_pool);
1095 for (i = 0; i < FRAME_BUFFERS; ++i)
1096 if (frame_bufs[i].ref_count == 0) break;
1097
1098 if (i != FRAME_BUFFERS) {
1099 if (frame_bufs[i].buf.use_external_reference_buffers) {
1100 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1101 // external reference buffers. Restore the buffer pointers to point to the
1102 // internally allocated memory.
1103 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1104 ybf->y_buffer = ybf->store_buf_adr[0];
1105 ybf->u_buffer = ybf->store_buf_adr[1];
1106 ybf->v_buffer = ybf->store_buf_adr[2];
1107 ybf->use_external_reference_buffers = 0;
1108 }
1109
1110 frame_bufs[i].ref_count = 1;
1111 } else {
1112 // We should never run out of free buffers. If this assertion fails, there
1113 // is a reference leak.
1114 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1115 // Reset i to be INVALID_IDX to indicate no free buffer found.
1116 i = INVALID_IDX;
1117 }
1118
1119 unlock_buffer_pool(cm->buffer_pool);
1120 return i;
1121}
1122
1123static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1124 // Release the previously-used frame-buffer
1125 if (cm->cur_frame != NULL) {
1126 --cm->cur_frame->ref_count;
1127 cm->cur_frame = NULL;
1128 }
1129
1130 // Assign a new framebuffer
1131 const int new_fb_idx = get_free_fb(cm);
1132 if (new_fb_idx == INVALID_IDX) return NULL;
1133
1134 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1135 cm->cur_frame->buf.buf_8bit_valid = 0;
1136 av1_zero(cm->cur_frame->interp_filter_selected);
1137 return cm->cur_frame;
1138}
1139
1140// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1141// counts accordingly.
1142static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1143 RefCntBuffer *rhs_ptr) {
1144 RefCntBuffer *const old_ptr = *lhs_ptr;
1145 if (old_ptr != NULL) {
1146 assert(old_ptr->ref_count > 0);
1147 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1148 --old_ptr->ref_count;
1149 }
1150
1151 *lhs_ptr = rhs_ptr;
1152 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1153 ++rhs_ptr->ref_count;
1154}
1155
1156static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1157 return cm->current_frame.frame_type == KEY_FRAME ||
1158 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1159}
1160
1161static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1162 return cm->current_frame.frame_type == S_FRAME;
1163}
1164
1165// These functions take a reference frame label between LAST_FRAME and
1166// EXTREF_FRAME inclusive. Note that this is different to the indexing
1167// previously used by the frame_refs[] array.
1168static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1169 const MV_REFERENCE_FRAME ref_frame) {
1170 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1171 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1172 : INVALID_IDX;
1173}
1174
1175static INLINE RefCntBuffer *get_ref_frame_buf(
1176 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1177 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1178 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1179}
1180
1181// Both const and non-const versions of this function are provided so that it
1182// can be used with a const AV1_COMMON if needed.
1183static INLINE const struct scale_factors *get_ref_scale_factors_const(
1184 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1185 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1186 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1187}
1188
1189static INLINE struct scale_factors *get_ref_scale_factors(
1190 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1191 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1192 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1193}
1194
1195static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1196 const AV1_COMMON *const cm) {
1197 const int primary_ref_frame = cm->features.primary_ref_frame;
1198 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1199 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1200 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1201}
1202
1203// Returns 1 if this frame might allow mvs from some reference frame.
1204static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1205 return !cm->features.error_resilient_mode &&
1206 cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1207 cm->seq_params->order_hint_info.enable_order_hint &&
1208 !frame_is_intra_only(cm);
1209}
1210
1211// Returns 1 if this frame might use warped_motion
1212static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1213 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1214 cm->seq_params->enable_warped_motion;
1215}
1216
1217static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1218 const int buf_rows = buf->mi_rows;
1219 const int buf_cols = buf->mi_cols;
1220 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1221
1222 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1223 buf_cols != mi_params->mi_cols) {
1224 aom_free(buf->mvs);
1225 buf->mi_rows = mi_params->mi_rows;
1226 buf->mi_cols = mi_params->mi_cols;
1227 CHECK_MEM_ERROR(cm, buf->mvs,
1228 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1229 ((mi_params->mi_cols + 1) >> 1),
1230 sizeof(*buf->mvs)));
1231 aom_free(buf->seg_map);
1232 CHECK_MEM_ERROR(
1233 cm, buf->seg_map,
1234 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1235 sizeof(*buf->seg_map)));
1236 }
1237
1238 const int mem_size =
1239 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1240 int realloc = cm->tpl_mvs == NULL;
1241 if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
1242
1243 if (realloc) {
1244 aom_free(cm->tpl_mvs);
1245 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1246 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1247 cm->tpl_mvs_mem_size = mem_size;
1248 }
1249}
1250
1251void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1252
1253static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1254 return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1255}
1256
1257static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1258 int num_planes, int tile_row,
1259 MACROBLOCKD *xd) {
1260 for (int i = 0; i < num_planes; ++i) {
1261 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1262 }
1263 xd->above_partition_context = above_contexts->partition[tile_row];
1264 xd->above_txfm_context = above_contexts->txfm[tile_row];
1265}
1266
1267static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1268 const int num_planes = av1_num_planes(cm);
1269 const CommonQuantParams *const quant_params = &cm->quant_params;
1270
1271 for (int i = 0; i < num_planes; ++i) {
1272 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1273 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1274 sizeof(quant_params->y_dequant_QTX));
1275 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1276 sizeof(quant_params->y_iqmatrix));
1277
1278 } else {
1279 if (i == AOM_PLANE_U) {
1280 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1281 sizeof(quant_params->u_dequant_QTX));
1282 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1283 sizeof(quant_params->u_iqmatrix));
1284 } else {
1285 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1286 sizeof(quant_params->v_dequant_QTX));
1287 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1288 sizeof(quant_params->v_iqmatrix));
1289 }
1290 }
1291 }
1292 xd->mi_stride = cm->mi_params.mi_stride;
1293 xd->error_info = cm->error;
1294 cfl_init(&xd->cfl, cm->seq_params);
1295}
1296
1297static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1298 const int num_planes) {
1299 int i;
1300 int row_offset = mi_row;
1301 int col_offset = mi_col;
1302 for (i = 0; i < num_planes; ++i) {
1303 struct macroblockd_plane *const pd = &xd->plane[i];
1304 // Offset the buffer pointer
1305 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1306 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1307 row_offset = mi_row - 1;
1308 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1309 col_offset = mi_col - 1;
1310 int above_idx = col_offset;
1311 int left_idx = row_offset & MAX_MIB_MASK;
1312 pd->above_entropy_context =
1313 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1314 pd->left_entropy_context =
1315 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1316 }
1317}
1318
1319static INLINE int calc_mi_size(int len) {
1320 // len is in mi units. Align to a multiple of SBs.
1321 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1322}
1323
1324static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1325 const int num_planes) {
1326 int i;
1327 for (i = 0; i < num_planes; i++) {
1328 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1329 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1330
1331 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1332 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1333 }
1334}
1335
1336static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1337 int mi_row, int bh, int mi_col, int bw,
1338 int mi_rows, int mi_cols) {
1339 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1340 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1341 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1342 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1343
1344 xd->mi_row = mi_row;
1345 xd->mi_col = mi_col;
1346
1347 // Are edges available for intra prediction?
1348 xd->up_available = (mi_row > tile->mi_row_start);
1349
1350 const int ss_x = xd->plane[1].subsampling_x;
1351 const int ss_y = xd->plane[1].subsampling_y;
1352
1353 xd->left_available = (mi_col > tile->mi_col_start);
1356 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1357 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1358 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1359 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1360 if (xd->up_available) {
1361 xd->above_mbmi = xd->mi[-xd->mi_stride];
1362 } else {
1363 xd->above_mbmi = NULL;
1364 }
1365
1366 if (xd->left_available) {
1367 xd->left_mbmi = xd->mi[-1];
1368 } else {
1369 xd->left_mbmi = NULL;
1370 }
1371
1372 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1373 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1374 xd->is_chroma_ref = chroma_ref;
1375 if (chroma_ref) {
1376 // To help calculate the "above" and "left" chroma blocks, note that the
1377 // current block may cover multiple luma blocks (eg, if partitioned into
1378 // 4x4 luma blocks).
1379 // First, find the top-left-most luma block covered by this chroma block
1380 MB_MODE_INFO **base_mi =
1381 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1382
1383 // Then, we consider the luma region covered by the left or above 4x4 chroma
1384 // prediction. We want to point to the chroma reference block in that
1385 // region, which is the bottom-right-most mi unit.
1386 // This leads to the following offsets:
1387 MB_MODE_INFO *chroma_above_mi =
1388 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1389 xd->chroma_above_mbmi = chroma_above_mi;
1390
1391 MB_MODE_INFO *chroma_left_mi =
1392 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1393 xd->chroma_left_mbmi = chroma_left_mi;
1394 }
1395
1396 xd->height = bh;
1397 xd->width = bw;
1398
1399 xd->is_last_vertical_rect = 0;
1400 if (xd->width < xd->height) {
1401 if (!((mi_col + xd->width) & (xd->height - 1))) {
1402 xd->is_last_vertical_rect = 1;
1403 }
1404 }
1405
1407 if (xd->width > xd->height)
1408 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1409}
1410
1411static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1412 const MB_MODE_INFO *above_mi,
1413 const MB_MODE_INFO *left_mi) {
1414 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1415 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1416 const int above_ctx = intra_mode_context[above];
1417 const int left_ctx = intra_mode_context[left];
1418 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1419}
1420
1421static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1422 int mi_col, BLOCK_SIZE subsize,
1423 BLOCK_SIZE bsize) {
1424 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1425 PARTITION_CONTEXT *const left_ctx =
1426 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1427
1428 const int bw = mi_size_wide[bsize];
1429 const int bh = mi_size_high[bsize];
1430 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1431 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1432}
1433
1434static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1435 int subsampling_x, int subsampling_y) {
1436 assert(bsize < BLOCK_SIZES_ALL);
1437 const int bw = mi_size_wide[bsize];
1438 const int bh = mi_size_high[bsize];
1439 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1440 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1441 return ref_pos;
1442}
1443
1444static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1445 size_t element) {
1446 assert(cdf != NULL);
1447 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1448}
1449
1450static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1451 const aom_cdf_prob *const in,
1452 BLOCK_SIZE bsize) {
1453 (void)bsize;
1454 out[0] = CDF_PROB_TOP;
1455 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1456 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1457 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1458 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1459 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1460 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1461 out[0] = AOM_ICDF(out[0]);
1462 out[1] = AOM_ICDF(CDF_PROB_TOP);
1463}
1464
1465static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1466 const aom_cdf_prob *const in,
1467 BLOCK_SIZE bsize) {
1468 (void)bsize;
1469 out[0] = CDF_PROB_TOP;
1470 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1471 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1472 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1473 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1474 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1475 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1476 out[0] = AOM_ICDF(out[0]);
1477 out[1] = AOM_ICDF(CDF_PROB_TOP);
1478}
1479
1480static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1481 int mi_col, BLOCK_SIZE subsize,
1482 BLOCK_SIZE bsize,
1483 PARTITION_TYPE partition) {
1484 if (bsize >= BLOCK_8X8) {
1485 const int hbs = mi_size_wide[bsize] / 2;
1486 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1487 switch (partition) {
1488 case PARTITION_SPLIT:
1489 if (bsize != BLOCK_8X8) break;
1490 AOM_FALLTHROUGH_INTENDED;
1491 case PARTITION_NONE:
1492 case PARTITION_HORZ:
1493 case PARTITION_VERT:
1494 case PARTITION_HORZ_4:
1495 case PARTITION_VERT_4:
1496 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1497 break;
1498 case PARTITION_HORZ_A:
1499 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1500 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1501 break;
1502 case PARTITION_HORZ_B:
1503 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1504 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1505 break;
1506 case PARTITION_VERT_A:
1507 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1508 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1509 break;
1510 case PARTITION_VERT_B:
1511 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1512 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1513 break;
1514 default: assert(0 && "Invalid partition type");
1515 }
1516 }
1517}
1518
1519static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1520 int mi_col, BLOCK_SIZE bsize) {
1521 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1522 const PARTITION_CONTEXT *left_ctx =
1523 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1524 // Minimum partition point is 8x8. Offset the bsl accordingly.
1525 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1526 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1527
1528 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1529 assert(bsl >= 0);
1530
1531 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1532}
1533
1534// Return the number of elements in the partition CDF when
1535// partitioning the (square) block with luma block size of bsize.
1536static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1537 if (bsize <= BLOCK_8X8)
1538 return PARTITION_TYPES;
1539 else if (bsize == BLOCK_128X128)
1540 return EXT_PARTITION_TYPES - 2;
1541 else
1542 return EXT_PARTITION_TYPES;
1543}
1544
1545static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1546 int plane) {
1547 assert(bsize < BLOCK_SIZES_ALL);
1548 int max_blocks_wide = block_size_wide[bsize];
1549
1550 if (xd->mb_to_right_edge < 0) {
1551 const struct macroblockd_plane *const pd = &xd->plane[plane];
1552 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1553 }
1554
1555 // Scale the width in the transform block unit.
1556 return max_blocks_wide >> MI_SIZE_LOG2;
1557}
1558
1559static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1560 int plane) {
1561 int max_blocks_high = block_size_high[bsize];
1562
1563 if (xd->mb_to_bottom_edge < 0) {
1564 const struct macroblockd_plane *const pd = &xd->plane[plane];
1565 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1566 }
1567
1568 // Scale the height in the transform block unit.
1569 return max_blocks_high >> MI_SIZE_LOG2;
1570}
1571
1572static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1573 const MACROBLOCKD *xd,
1574 int mi_col_start, int mi_col_end,
1575 const int tile_row) {
1576 const SequenceHeader *const seq_params = cm->seq_params;
1577 const int num_planes = av1_num_planes(cm);
1578 const int width = mi_col_end - mi_col_start;
1579 const int aligned_width =
1580 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1581 const int offset_y = mi_col_start;
1582 const int width_y = aligned_width;
1583 const int offset_uv = offset_y >> seq_params->subsampling_x;
1584 const int width_uv = width_y >> seq_params->subsampling_x;
1585 CommonContexts *const above_contexts = &cm->above_contexts;
1586
1587 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1588 if (num_planes > 1) {
1589 if (above_contexts->entropy[1][tile_row] &&
1590 above_contexts->entropy[2][tile_row]) {
1591 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1592 width_uv);
1593 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1594 width_uv);
1595 } else {
1596 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1597 "Invalid value of planes");
1598 }
1599 }
1600
1601 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1602 aligned_width);
1603
1604 memset(above_contexts->txfm[tile_row] + mi_col_start,
1605 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1606}
1607
1608static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1609 av1_zero(xd->left_entropy_context);
1610 av1_zero(xd->left_partition_context);
1611
1612 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1613 sizeof(xd->left_txfm_context_buffer));
1614}
1615
1616// Disable array-bounds checks as the TX_SIZE enum contains values larger than
1617// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1618// infeasible. The assert is enough for static analysis and this or other tools
1619// asan, valgrind would catch oob access at runtime.
1620#if defined(__GNUC__) && __GNUC__ >= 4
1621#pragma GCC diagnostic ignored "-Warray-bounds"
1622#endif
1623
1624#if defined(__GNUC__) && __GNUC__ >= 4
1625#pragma GCC diagnostic warning "-Warray-bounds"
1626#endif
1627
1628static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1629 int i;
1630 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1631}
1632
1633static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1634 const MACROBLOCKD *xd) {
1635 uint8_t bw = tx_size_wide[tx_size];
1636 uint8_t bh = tx_size_high[tx_size];
1637
1638 if (skip) {
1639 bw = n4_w * MI_SIZE;
1640 bh = n4_h * MI_SIZE;
1641 }
1642
1643 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1644 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1645}
1646
1647static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1648 int mi_row, int mi_col) {
1649 return mi_row * mi_params->mi_stride + mi_col;
1650}
1651
1652static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1653 int mi_row, int mi_col) {
1654 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1655 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1656 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1657
1658 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1659}
1660
1661// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1662static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1663 MACROBLOCKD *const xd, int mi_row,
1664 int mi_col) {
1665 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1666 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1667 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1668 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1669 // 'xd->mi' should point to an offset in 'mi_grid_base';
1670 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1671 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1672 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1673 xd->tx_type_map_stride = mi_params->mi_stride;
1674}
1675
1676static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1677 TXFM_CONTEXT *left_ctx,
1678 TX_SIZE tx_size, TX_SIZE txb_size) {
1679 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1680 int bh = mi_size_high[bsize];
1681 int bw = mi_size_wide[bsize];
1682 uint8_t txw = tx_size_wide[tx_size];
1683 uint8_t txh = tx_size_high[tx_size];
1684 int i;
1685 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1686 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1687}
1688
1689static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1690 switch (tx_dim) {
1691 case 128:
1692 case 64: return TX_64X64; break;
1693 case 32: return TX_32X32; break;
1694 case 16: return TX_16X16; break;
1695 case 8: return TX_8X8; break;
1696 default: return TX_4X4;
1697 }
1698}
1699
1700static INLINE TX_SIZE get_tx_size(int width, int height) {
1701 if (width == height) {
1702 return get_sqr_tx_size(width);
1703 }
1704 if (width < height) {
1705 if (width + width == height) {
1706 switch (width) {
1707 case 4: return TX_4X8; break;
1708 case 8: return TX_8X16; break;
1709 case 16: return TX_16X32; break;
1710 case 32: return TX_32X64; break;
1711 }
1712 } else {
1713 switch (width) {
1714 case 4: return TX_4X16; break;
1715 case 8: return TX_8X32; break;
1716 case 16: return TX_16X64; break;
1717 }
1718 }
1719 } else {
1720 if (height + height == width) {
1721 switch (height) {
1722 case 4: return TX_8X4; break;
1723 case 8: return TX_16X8; break;
1724 case 16: return TX_32X16; break;
1725 case 32: return TX_64X32; break;
1726 }
1727 } else {
1728 switch (height) {
1729 case 4: return TX_16X4; break;
1730 case 8: return TX_32X8; break;
1731 case 16: return TX_64X16; break;
1732 }
1733 }
1734 }
1735 assert(0);
1736 return TX_4X4;
1737}
1738
1739static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1740 const TXFM_CONTEXT *const left_ctx,
1741 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1742 const uint8_t txw = tx_size_wide[tx_size];
1743 const uint8_t txh = tx_size_high[tx_size];
1744 const int above = *above_ctx < txw;
1745 const int left = *left_ctx < txh;
1746 int category = TXFM_PARTITION_CONTEXTS;
1747
1748 // dummy return, not used by others.
1749 if (tx_size <= TX_4X4) return 0;
1750
1751 TX_SIZE max_tx_size =
1752 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1753
1754 if (max_tx_size >= TX_8X8) {
1755 category =
1756 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1757 (TX_SIZES - 1 - max_tx_size) * 2;
1758 }
1759 assert(category != TXFM_PARTITION_CONTEXTS);
1760 return category * 3 + above + left;
1761}
1762
1763// Compute the next partition in the direction of the sb_type stored in the mi
1764// array, starting with bsize.
1765static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1766 int mi_row, int mi_col,
1767 BLOCK_SIZE bsize) {
1768 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1769 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1770 return PARTITION_INVALID;
1771
1772 const int offset = mi_row * mi_params->mi_stride + mi_col;
1773 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1774 const BLOCK_SIZE subsize = mi[0]->bsize;
1775
1776 assert(bsize < BLOCK_SIZES_ALL);
1777
1778 if (subsize == bsize) return PARTITION_NONE;
1779
1780 const int bhigh = mi_size_high[bsize];
1781 const int bwide = mi_size_wide[bsize];
1782 const int sshigh = mi_size_high[subsize];
1783 const int sswide = mi_size_wide[subsize];
1784
1785 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1786 mi_col + bhigh / 2 < mi_params->mi_cols) {
1787 // In this case, the block might be using an extended partition
1788 // type.
1789 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1790 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1791
1792 if (sswide == bwide) {
1793 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1794 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1795 // half was split.
1796 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1797 assert(sshigh * 2 == bhigh);
1798
1799 if (mbmi_below->bsize == subsize)
1800 return PARTITION_HORZ;
1801 else
1802 return PARTITION_HORZ_B;
1803 } else if (sshigh == bhigh) {
1804 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1805 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1806 // half was split.
1807 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1808 assert(sswide * 2 == bhigh);
1809
1810 if (mbmi_right->bsize == subsize)
1811 return PARTITION_VERT;
1812 else
1813 return PARTITION_VERT_B;
1814 } else {
1815 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1816 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1817 // dimensions, we immediately know this is a split (which will recurse to
1818 // get to subsize). Otherwise look down and to the right. With
1819 // PARTITION_VERT_A, the right block will have height bhigh; with
1820 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1821 // it's PARTITION_SPLIT.
1822 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1823
1824 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1825 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1826
1827 return PARTITION_SPLIT;
1828 }
1829 }
1830 const int vert_split = sswide < bwide;
1831 const int horz_split = sshigh < bhigh;
1832 const int split_idx = (vert_split << 1) | horz_split;
1833 assert(split_idx != 0);
1834
1835 static const PARTITION_TYPE base_partitions[4] = {
1836 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1837 };
1838
1839 return base_partitions[split_idx];
1840}
1841
1842static INLINE void set_sb_size(SequenceHeader *const seq_params,
1843 BLOCK_SIZE sb_size) {
1844 seq_params->sb_size = sb_size;
1845 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1846 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1847}
1848
1849// Returns true if the frame is fully lossless at the coded resolution.
1850// Note: If super-resolution is used, such a frame will still NOT be lossless at
1851// the upscaled resolution.
1852static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1853 const MACROBLOCKD *xd) {
1854 int coded_lossless = 1;
1855 if (cm->seg.enabled) {
1856 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1857 if (!xd->lossless[i]) {
1858 coded_lossless = 0;
1859 break;
1860 }
1861 }
1862 } else {
1863 coded_lossless = xd->lossless[0];
1864 }
1865 return coded_lossless;
1866}
1867
1868static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1869 return seq_level_idx == SEQ_LEVEL_MAX ||
1870 (seq_level_idx < SEQ_LEVELS &&
1871 // The following levels are currently undefined.
1872 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1873 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1874 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
1875 seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1876 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
1877}
1878
1881#ifdef __cplusplus
1882} // extern "C"
1883#endif
1884
1885#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition: aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition: aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition: aom_image.h:209
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition: aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:750
uint8_t * last_frame_seg_map
Definition: av1_common_int.h:932
RestorationInfo rst_info[3]
Definition: av1_common_int.h:946
WarpedMotionParams global_motion[REF_FRAMES]
Definition: av1_common_int.h:970
int superres_upscaled_width
Definition: av1_common_int.h:799
int8_t ref_frame_side[REF_FRAMES]
Definition: av1_common_int.h:1037
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition: av1_common_int.h:869
RefCntBuffer * prev_frame
Definition: av1_common_int.h:826
FRAME_CONTEXT * default_frame_context
Definition: av1_common_int.h:987
int ref_frame_id[REF_FRAMES]
Definition: av1_common_int.h:1012
int superres_upscaled_height
Definition: av1_common_int.h:800
DeltaQInfo delta_q_info
Definition: av1_common_int.h:965
SequenceHeader * seq_params
Definition: av1_common_int.h:976
int width
Definition: av1_common_int.h:775
RefCntBuffer * cur_frame
Definition: av1_common_int.h:832
CdefInfo cdef_info
Definition: av1_common_int.h:955
loop_filter_info_n lf_info
Definition: av1_common_int.h:938
CurrentFrame current_frame
Definition: av1_common_int.h:754
int remapped_ref_idx[REF_FRAMES]
Definition: av1_common_int.h:854
RestorationLineBuffers * rlbs
Definition: av1_common_int.h:948
aom_film_grain_t film_grain_params
Definition: av1_common_int.h:960
int show_existing_frame
Definition: av1_common_int.h:900
uint32_t buffer_removal_times[(8 *4)+1]
Definition: av1_common_int.h:815
int temporal_layer_id
Definition: av1_common_int.h:1043
struct aom_internal_error_info * error
Definition: av1_common_int.h:758
int showable_frame
Definition: av1_common_int.h:893
int tpl_mvs_mem_size
Definition: av1_common_int.h:1026
uint32_t frame_presentation_time
Definition: av1_common_int.h:821
struct loopfilter lf
Definition: av1_common_int.h:939
int spatial_layer_id
Definition: av1_common_int.h:1049
FeatureFlags features
Definition: av1_common_int.h:905
struct scale_factors sf_identity
Definition: av1_common_int.h:861
YV12_BUFFER_CONFIG rst_frame
Definition: av1_common_int.h:949
CommonModeInfoParams mi_params
Definition: av1_common_int.h:910
uint8_t superres_scale_denominator
Definition: av1_common_int.h:807
int show_frame
Definition: av1_common_int.h:885
struct segmentation seg
Definition: av1_common_int.h:927
CommonQuantParams quant_params
Definition: av1_common_int.h:922
TPL_MV_REF * tpl_mvs
Definition: av1_common_int.h:1022
int current_frame_id
Definition: av1_common_int.h:1011
int32_t * rst_tmpbuf
Definition: av1_common_int.h:947
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition: av1_common_int.h:878
CommonContexts above_contexts
Definition: av1_common_int.h:1005
CommonTileParams tiles
Definition: av1_common_int.h:992
BufferPool * buffer_pool
Definition: av1_common_int.h:997
int ref_frame_sign_bias[REF_FRAMES]
Definition: av1_common_int.h:1031
FRAME_CONTEXT * fc
Definition: av1_common_int.h:981
int height
Definition: av1_common_int.h:776
int render_width
Definition: av1_common_int.h:786
int render_height
Definition: av1_common_int.h:787
Parameters related to CDEF.
Definition: av1_common_int.h:196
int cdef_bits
Number of CDEF strength values in bits.
Definition: av1_common_int.h:218
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition: av1_common_int.h:220
int allocated_num_workers
Number of CDEF workers.
Definition: av1_common_int.h:222
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition: av1_common_int.h:208
int nb_cdef_strengths
Number of CDEF strength values.
Definition: av1_common_int.h:212
int cdef_damping
CDEF damping factor.
Definition: av1_common_int.h:210
uint16_t * srcbuf
CDEF intermediate buffer.
Definition: av1_common_int.h:202
Contexts used for transmitting various symbols in the bitstream.
Definition: av1_common_int.h:713
PARTITION_CONTEXT ** partition
Definition: av1_common_int.h:718
int num_planes
Definition: av1_common_int.h:742
ENTROPY_CONTEXT ** entropy[3]
Definition: av1_common_int.h:728
int num_tile_rows
Definition: av1_common_int.h:743
int num_mi_cols
Definition: av1_common_int.h:744
TXFM_CONTEXT ** txfm
Definition: av1_common_int.h:736
Params related to MB_MODE_INFO arrays and related info.
Definition: av1_common_int.h:501
int mb_cols
Definition: av1_common_int.h:511
MB_MODE_INFO * mi_alloc
Definition: av1_common_int.h:535
int mi_rows
Definition: av1_common_int.h:522
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:590
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:585
int mi_cols
Definition: av1_common_int.h:527
int mi_alloc_size
Definition: av1_common_int.h:539
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height, BLOCK_SIZE min_partition_size)
Definition: av1_common_int.h:600
int MBs
Definition: av1_common_int.h:516
TX_TYPE * tx_type_map
Definition: av1_common_int.h:575
int mi_alloc_stride
Definition: av1_common_int.h:543
int mi_grid_size
Definition: av1_common_int.h:563
int mi_stride
Definition: av1_common_int.h:567
int mb_rows
Definition: av1_common_int.h:506
MB_MODE_INFO ** mi_grid_base
Definition: av1_common_int.h:559
BLOCK_SIZE mi_alloc_bsize
Definition: av1_common_int.h:550
Parameters related to quantization at the frame level.
Definition: av1_common_int.h:609
int u_ac_delta_q
Definition: av1_common_int.h:634
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:683
int qmatrix_level_v
Definition: av1_common_int.h:705
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:665
int16_t u_dequant_QTX[8][2]
Definition: av1_common_int.h:654
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:679
int qmatrix_level_y
Definition: av1_common_int.h:703
int v_ac_delta_q
Definition: av1_common_int.h:639
bool using_qmatrix
Definition: av1_common_int.h:696
int u_dc_delta_q
Definition: av1_common_int.h:624
int qmatrix_level_u
Definition: av1_common_int.h:704
int base_qindex
Definition: av1_common_int.h:613
int16_t v_dequant_QTX[8][2]
Definition: av1_common_int.h:655
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:687
int16_t y_dequant_QTX[8][2]
Definition: av1_common_int.h:653
int v_dc_delta_q
Definition: av1_common_int.h:628
int y_dc_delta_q
Definition: av1_common_int.h:619
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:669
Params related to tiles.
Definition: av1_common_int.h:427
int uniform_spacing
Definition: av1_common_int.h:443
int max_width_sb
Definition: av1_common_int.h:430
int log2_rows
Definition: av1_common_int.h:450
int min_log2_rows
Definition: av1_common_int.h:462
int width
Definition: av1_common_int.h:451
int max_log2_rows
Definition: av1_common_int.h:470
int row_start_sb[MAX_TILE_ROWS+1]
Definition: av1_common_int.h:484
int cols
Definition: av1_common_int.h:428
int max_height_sb
Definition: av1_common_int.h:431
unsigned int large_scale
Definition: av1_common_int.h:488
unsigned int single_tile_decoding
Definition: av1_common_int.h:494
int max_log2_cols
Definition: av1_common_int.h:466
int log2_cols
Definition: av1_common_int.h:449
int min_log2
Definition: av1_common_int.h:474
int rows
Definition: av1_common_int.h:429
int min_inner_width
Definition: av1_common_int.h:436
int min_log2_cols
Definition: av1_common_int.h:458
int col_start_sb[MAX_TILE_COLS+1]
Definition: av1_common_int.h:479
int height
Definition: av1_common_int.h:452
Frame level features.
Definition: av1_common_int.h:358
InterpFilter interp_filter
Definition: av1_common_int.h:407
bool allow_ref_frame_mvs
Definition: av1_common_int.h:381
bool allow_warped_motion
Definition: av1_common_int.h:377
bool allow_screen_content_tools
Definition: av1_common_int.h:375
bool switchable_motion_mode
Definition: av1_common_int.h:405
TX_MODE tx_mode
Definition: av1_common_int.h:406
bool reduced_tx_set_used
Definition: av1_common_int.h:394
bool allow_intrabc
Definition: av1_common_int.h:376
int byte_alignment
Definition: av1_common_int.h:416
bool coded_lossless
Definition: av1_common_int.h:385
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition: av1_common_int.h:421
bool error_resilient_mode
Definition: av1_common_int.h:400
int primary_ref_frame
Definition: av1_common_int.h:412
bool disable_cdf_update
Definition: av1_common_int.h:362
bool allow_high_precision_mv
Definition: av1_common_int.h:367
bool cur_frame_force_integer_mv
Definition: av1_common_int.h:371
bool all_lossless
Definition: av1_common_int.h:389
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
Parameters related to Restoration Info.
Definition: restoration.h:256
External frame buffer.
Definition: aom_frame_buffer.h:40
Variables related to current coding block.
Definition: blockd.h:577
bool left_available
Definition: blockd.h:633
uint8_t * tx_type_map
Definition: blockd.h:673
int mb_to_bottom_edge
Definition: blockd.h:687
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:747
struct macroblockd_plane plane[3]
Definition: blockd.h:613
int mb_to_top_edge
Definition: blockd.h:686
int mb_to_right_edge
Definition: blockd.h:685
bool up_available
Definition: blockd.h:629
MB_MODE_INFO * above_mbmi
Definition: blockd.h:652
bool chroma_up_available
Definition: blockd.h:637
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:740
bool chroma_left_available
Definition: blockd.h:641
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:725
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:659
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:754
int tx_type_map_stride
Definition: blockd.h:678
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:666
int mi_row
Definition: blockd.h:582
int mi_stride
Definition: blockd.h:589
bool is_last_vertical_rect
Definition: blockd.h:794
bool is_first_horizontal_rect
Definition: blockd.h:799
uint8_t width
Definition: blockd.h:772
struct aom_internal_error_info * error_info
Definition: blockd.h:845
CFL_CTX cfl
Definition: blockd.h:901
int lossless[8]
Definition: blockd.h:824
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:717
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:710
MB_MODE_INFO ** mi
Definition: blockd.h:624
uint8_t height
Definition: blockd.h:773
MB_MODE_INFO * left_mbmi
Definition: blockd.h:647
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:732
bool is_chroma_ref
Definition: blockd.h:608
int mi_col
Definition: blockd.h:583
int mb_to_left_edge
Definition: blockd.h:684
YV12 frame buffer data structure.
Definition: yv12config.h:39