
Making Music with
ABC 2

A practical guide to modern ABC notation

by Guido Gonzato

Making Music with ABC 2
Copyleft © Guido Gonzato, PhD, 2003–2015
Image cover by Horia Varlan, [CC–BY–2.0], via Wikimedia Commons
Latest update: June 5, 2015
Typeset with LATEX, with the help of the Jed editor and LATEX4JED.
This manual is released under the terms of the GNU Free Documentation License 1.3:
http://www.gnu.org/licenses/fdl.html

The latest version of this manual is available at:
http://abcplus.sourceforge.net/#ABCGuide

http://www.jedsoft.org/jed/
http://www.ctan.org/pkg/latex4jed
http://www.gnu.org/licenses/fdl.html
http://abcplus.sourceforge.net/#ABCGuide

To Annarosa,
Bruno,

Lorenzo
�

Contents

About This Book xiii

1 Music on the Computer with ABC 2 1
1.1 Introduction . 1

1.1.1 Requirements . 2
1.1.2 Software . 2
1.1.3 Why ABC? . 3

1.2 Getting Started . 6
1.2.1 Installing the Programs . 6
1.2.2 ABC in a Nutshell . 7
1.2.3 Our First Score . 8

2 Melody 13
2.1 Notes and Symbols . 13

2.1.1 Pitch: A-G a-g ,’ . 13
2.1.2 Note Length: L: . 14
2.1.3 Rests and Spacing: z Z x y . 16
2.1.4 Accidentals: ˆ = . 16
2.1.5 Dotted Notes: < > . 17
2.1.6 Ties, Slurs, Staccato: - () . 18
2.1.7 Tuplets: (n . 19
2.1.8 Chords: [] . 20
2.1.9 Lyrics: W: w: . 20
2.1.10 Foreign Characters . 22

Typing Accented Letters: Beware! 23
2.1.11 Grace Notes: ˜ {} . 23
2.1.12 Forcing Line Breaks: ! . 23
2.1.13 Avoiding Line Breaks: \ . 24
2.1.14 Inline Fields . 25

2.2 Music Properties . 25
2.2.1 Key signatures and Clefs: K: . 25

v

Key Signatures . 25
All Seven Clefs . 26
Bass and Alto Clefs Compatibility Issues 29

2.2.2 Metre: M: . 29
2.2.3 Bars and Repeats: | / : [] . 30
2.2.4 Title, Composer, Tempo: T: C: Q: 31
2.2.5 Parts: P: . 32
2.2.6 Accompaniment Chords: "" . 33
2.2.7 Text Annotations: "ˆ <>@" . 35

Figured Bass . 36
2.2.8 Ornaments: !symbol! . 36
2.2.9 Redefinable Symbols: U: . 38
2.2.10 Information Fields . 39

3 Harmony 41
3.1 Polyphony in ABC . 41

3.1.1 Voices and Systems: V: . 41
3.1.2 Positioning Voices: %%staves and %%score 44
3.1.3 Voice Splitting: & . 48
3.1.4 Change of System . 49

4 Page Layout 53
4.1 Formatting Parameters . 53

4.1.1 Changing Parameters . 56
4.1.2 The Grand Staff . 57
4.1.3 Using Fonts and Text . 57
4.1.4 Voice Scale . 60
4.1.5 Staff Breaks . 61
4.1.6 Multi-column Output . 61
4.1.7 Customising Titles . 63
4.1.8 Headers and Footers . 64
4.1.9 Inserting Graphics Files . 65

4.2 Format files . 65
4.3 Numbering Measures and Pages . 66

4.3.1 Measure Control . 67
4.4 Saving Space . 67
4.5 Advanced Customisation (Experts Only!) 68

4.5.1 New PostScript Routines . 68
4.5.2 Accompaniment Chords in Italian Notation 68
4.5.3 Defining New Symbols . 69

vi

4.5.4 Adding Fonts . 71
4.5.5 Customising Tuplets . 72
4.5.6 Tin Whistle Fingerings . 73

5 Playing 75
5.1 MIDI Conversion . 75

5.1.1 A Software MIDI Player: TiMidity++ 76
5.1.2 Our First Midi . 76
5.1.3 Example: How To Make a Ringtone 77
5.1.4 Supported Ornaments . 78
5.1.5 %%MIDI Commands . 78
5.1.6 Voices and Instruments . 79
5.1.7 Accompaniment Chords . 80
5.1.8 Customising Beats . 82
5.1.9 Arpeggios . 83
5.1.10 New Accompaniment Chords . 84
5.1.11 Broken Rhythm . 84
5.1.12 Drum Patterns . 85
5.1.13 Percussion Instruments . 86
5.1.14 Portamento . 87
5.1.15 Drone . 87
5.1.16 midi2abc . 88
5.1.17 Global Settings . 89

5.2 Differences and Incompatibilities . 90

6 Converting 91
6.1 The abcpp Preprocessor . 91

6.1.1 Basic Usage . 91
6.1.2 Advanced Usage . 93

6.2 Using the abcm2ps Command . 95
6.3 abc2abc . 95

7 Other Possibilities 97
7.1 Inserting Music in Other Programs . 97
7.2 Inserting Music in LATEX . 97

7.2.1 Using abc.sty . 98
7.3 Converting Graphics to EPS . 99
7.4 Parts Extraction . 99
7.5 Limitations of abcm2ps . 100
7.6 Final Comments . 100

vii

7.6.1 Please, Make a Donation. 100
7.6.2 In Loving Memory of Annarosa Del Piero, 1930–2000 101

A Bits & Pieces 103
A.1 Web Links . 103
A.2 ABC Fields . 104
A.3 Glossary . 104
A.4 Character Sets . 105
A.5 Formatting Commands . 105

A.5.1 Page Format . 106
A.5.2 Text . 106
A.5.3 Fonts . 107
A.5.4 Spacing . 108
A.5.5 Other Commands . 110

A.6 abcMIDI commands . 113
A.7 PostScript Fonts . 116
A.8 MIDI Instruments . 117

A.8.1 Standard instruments . 117
A.8.2 Percussion Instruments . 119

viii

List of Tables

1.1 Comparison between note names in different notations. 11

2.1 How to obtain characters of foreign languages. 22
2.2 Correspondence between the key and the number of sharps or flats. 26
2.3 Modal scales. 26
2.4 Clefs and associated K: fields. 27
2.5 Types of accompaniment chords. 34
2.6 Standard abbreviations for common symbols. 39

5.1 Standard notes and corresponding MIDI pitches. 88

ix

x

List of Figures

1.1 Managing a tune collection with EasyABC. 3
1.2 Writing a tune with the MandolinTab abc converter. 4

2.1 Standard expression symbols. 37

3.1 A piece where the system changes twice. 51

4.1 Ave Verum with formatting parameters. 55
4.2 Alternating text with music. 59
4.3 Using different fonts in strings . 60

5.1 Converting a MIDI file to ABC with runabc.tcl. 89

xi

xii

About This Book

THIS manual explains how to make beautiful sheet music and MIDI files using a computer,
some free software, and the ABC 2 music notation.

It’s aimed at musicians with some computer expertise who don’t want to spend a lot of money
on commercial music software. Both folk and classical musicians may benefit from this guide,
not to mention music teachers!
This manual comes in printed and electronic versions; the latter is accompanied by a few audio
files. Just like the software that is used to make the music, this manual is free and can be freely
copied and shared.
I hope you will find my work useful and enjoyable.
Cheers,

Guido Gonzato =8-)

THIS IS A WORK-IN-PROGRESS (June 5, 2015) RELEASE.

xiii

xiv

Chapter 1

Music on the Computer with ABC 2

1.1 Introduction

IF you are a musician and if you can use a computer, you are lucky. First of all, because you
are a musician; secondly, because the computer is a precious tool for writing music. Lots

of programs are available, even for free.
Most music notation programs have a visual approach: one or more staves are displayed on
the screen, and the user drags and drops notes and symbols using the mouse. An alternative
approach is writing music using a text-based notation. This is a non-visual mode that represents
notes and other symbols using characters. A specialised program then translates the notation
into printable sheet music in some electronic format (e.g. in PDF) and/or into a MIDI file.
Visual programs are easier for beginners and are probably more intuitive, but text-based nota-
tions make for faster transcription and have other advantages.
Many text-based notations have been invented. ABC, introduced by Chris Walshaw in 1991, is
one of the best: being simple, easy to learn yet very powerful, it has gained widespread popu-
larity. Thousands of tunes written in ABC are available on the Internet: in fact, this notation is
the de facto standard among folk musicians. The ABC home page is http://abcnotation.com.
ABC was later expanded to provide multiple voices (polyphony), page layout details, and MIDI
commands. This is a major release of the ABC notation, and has been called ABC 2: its formal
description is available at http://abcnotation.com/wiki/abc:standard:v2.1.1.
A few programs implement most ABC 2 features and provide some extensions, which in turn
may become part of the ABC standard in the future. The purpose of this guide is to introduce
the reader to ABC 2 and the most important features of its related programs. Ideally, people
who could benefit from this manual are:

• folk musicians who would like to learn as little ABC as necessary to understand the files
they find on the net. These people can skip the part about harmony, and probably do not
need to study this guide thoroughly;

• classical musicians who would like to use ABC 2 for typesetting their scores.

In both cases, if you wish to print sheet music for your choir or band, or make a song book, or
perhaps just teach music, you have found the right tool. And it’s also free!
The ABC 2 home page is http://abcplus.sourceforge.net.

1

http://abcnotation.com
http://abcnotation.com/wiki/abc:standard:v2.1.1
http://abcplus.sourceforge.net

2 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

A Few Words About “Standards”. Although ABC 2 is formally defined, actual implemen-
tations differ from the theoretical standard. This guide will concentrate on practical implemen-
tations of ABC 2, not on theoretical features.
Deprecated syntax variations of old ABC releases will not be explained, or even mentioned
unless necessary. I’ll try and show you just one way to do things: the right way (hopefully).
For the sake of simplicity, in the following I shall simply write “ABC” instead of “ABC 2”.

1.1.1 Requirements

I assume that you have a PC with Windows, Mac OS X, GNU/Linux or other Unix variants,
and that you are reasonably familiar with computers. An Android tablet (or even phone) is a
viable alternative.
Expertise in the Windows or Unix command line interface is not required. It is required, how-
ever, that you can read music: the treble clef and two octaves starting at middle C should
suffice.

1.1.2 Software

The state of the art of ABC is currently represented by two great little programs: the abcm2ps
typesetter, and the MIDI creator abc2midi. Both are free software released under the GNU
GPL license.
abcm2ps reads ABC files and converts them to SVG or PostScript. The latter is a file for-
mat closely related to PDF, and it can be viewed and printed with another free program:
Ghostscript. This application converts PostScript files into several formats, PDF being the
most important. SVG output is currently slightly less complete than PostScript; however, SVG
output is great for Web pages, and is fully editable with graphics programs such as Inkscape.
The author of abcm2ps, an organist and programmer called Jean-François Moine, releases
“stable” and “development” versions of his program. The latter has many enhancements, but
it may be buggy. As of this writing,1 the stable release is 7.8.14, and the development release
is 8.8.0.
abc2midi converts ABC files to MIDI. It is part of the abcMIDI package, which include other
utility applications. Its usage will be described in Part 5 (page 75) of this guide.

Z Warning
Please note that abcm2ps and abcMIDI are not completely compatible with each other. The
former supports several ABC features that only make sense in printed music, plus others that
the latter does not support (yet); for example, nested tuplets. Therefore, don’t be surprised if
you can’t hear some music features that you can see.

Since ABC files are plain text files, an essential tool for writing them is a good text editor.
Countless free editors exist, some of which have facilities for editing ABC files. In general,
any application that can be used to write text can also be used to write ABC files.

1June 5, 2015.

1.1. INTRODUCTION 3

abcm2ps and abc2midi are command-line driven programs: in short, you cannot start them
double-clicking on their icons. To use these programs, you have to open a command shell
(Windows Command Prompt, Unix or Android terminal) and type commands. Geeky stuff!
Scared off? Don’t worry: the command line can be avoided. There are programs that gather
all relevant pieces of software in a single integrated environment; they are listed at the ABC 2
home page. Let me cite these two options:

• EasyABC (Figure 1.1), a multiplatform program available for Windows, GNU/Linux,
OS X;

• The MandolinTab (once Folkinfo) Abc Converter (Figure 1.2): a web interface to abcm-
2ps and abcMIDI.

The MandolinTab converter is probably the easiest solution, as you don’t have to install any-
thing.

Figure 1.1: Managing a tune collection with EasyABC.

1.1.3 Why ABC?

I know from experience that graphical programs (nearly all are commercial software) are con-
sidered easier to use than non-graphical ones.2 So, why should one learn ABC?
Well, compared to graphical programs ABC has many advantages:

2erroneously, but only expert users realize it.

4 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

Figure 1.2: Writing a tune with the MandolinTab abc converter.

1.1. INTRODUCTION 5

smart: ABC allows for small and readable files, easy searching and indexing of tunebooks,
easy creation of music archives, etc;

text only: the importance of this feature can’t be overemphasised. Being simple text, ABC

music can be read and written by any computer system on Earth; can be used by visually
impaired people, texted by phone, scribbled down on beermats, . . .

scalability: with ABC you can create scores from very simple to highly sophisticated;

ease of use: ABC is easy to learn, and after a little practice it becomes very intuitive;

quality: using abcm2ps, ABC produces publication quality sheet music;

price: while commercial software is often expensive, nearly all programs for making ABC

music are free, and can be freely copied and shared with your friends or students;

low resources: ABC programs are very compact and can run on old computers, or even tablets
or smartphones;

portability: music is created as PostScript or PDF and MIDI files instead of proprietary file
formats. This way, you can share your music with everybody, not only people who have
the software to produce it;

flexibility: inserting music written in ABC in web pages or word processor files is very simple;

speed: writing music in ABC is much faster than using any graphical program;

learning value: if you teach music, ABC in an invaluable tool that facilitates the learning of
music theory;

fun: in my humble opinion, writing music in ABC is more fun!

Needless to say, there are disadvantages as well:

learning curve: while a graphical program may allow you to get started right away (at least
in theory), ABC requires that you take your time and study the syntax before you can get
started;

file conversion: if your work environment forces you to use a specific commercial program,
you may find it difficult or impossible to convert existing music files to ABC and vice
versa;

limitations: ABC can’t do everything. Currently, it can’t deal with some types of music, such
as Gregorian chant and non-European music.

To overcome the first hurdle, this guide is hopefully a good start; but I also recommend that
you look at some scores to see real-life examples of ABC in action. The ABC home page has
many links to ABC collections; on the ABC 2 page you will find more complex choral scores.

6 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

1.2 Getting Started

In order to write music with ABC, you follow these steps:

1. using an editor, write the tune using the ABC syntax;

2. convert the tune using abcm2ps, creating a PostScript or SVG file;

3. view the PostScript file with Ghostscript or other viewer, or the SVG file with any
browser;

4. convert the PostScript or the SVG file into PDF format;

5. optionally, create a MIDI file with abc2midi;

6. finally, if the music you wrote is free from copyright, publish it on the web for others to
enjoy!

1.2.1 Installing the Programs

Relevant web pages:

• the abcm2ps typesetter:
http://moinejf.free.fr
http://abcplus.sourceforge.net/#abcm2ps

• abc2midi:
http://ifdo.pugmarks.com/∼seymour/runabc/top.html
http://abcplus.sourceforge.net/#abcMIDI

• Ghostscript (all platforms except Android):
http://www.ghostscript.com/

• Sumatra PDF viewer (Windows):
http://www.sumatrapdfreader.org/free-pdf-reader.html

• EasyABC:
http://easyabc.sourceforge.net

• The MandolinTab (once Folkinfo) converter:
http://mandolintab.net/abcconverter.php

Ready-to-run packages for Windows, GNU/Linux, Mac OS X, and Android are available from
the ABC 2 web site. Besides, all GNU/Linux distributions include Ghostscript and a document
viewer that reads PostScript. SVG output can be viewed with any web browser.
At the moment, Android has no Ghostscript support and only SVG output is usable. It’s not as
powerful as PostScript, but it’s pretty close.

http://moinejf.free.fr
http://abcplus.sourceforge.net/#abcm2ps
http://ifdo.pugmarks.com/~seymour/runabc/top.html
http://abcplus.sourceforge.net/#abcMIDI
http://www.ghostscript.com/
http://www.sumatrapdfreader.org/free-pdf-reader.html
http://easyabc.sourceforge.net
http://mandolintab.net/abcconverter.php

1.2. GETTING STARTED 7

1.2.2 ABC in a Nutshell

ABC music is written in text files with extension .abc or .abp. The extension is not obligatory,
but highly recommended.
ABC uses the characters you find on standard computer keyboards to represent notes and sym-
bols:

• characters like A B C a b c z represent notes and rests;

• accidentals, ties, slurs etc. are written with characters like = - () and so on;

• expression symbols are notated with words like !fff!, !fermata!, !tenuto!, . . .

• the metre, clef, title, and other tune properties are written in words called fields, like M:,
K:, T:;

• low-level details (that is, formatting parameters or MIDI commands) are written using
commands like %%titlefont or %%MIDI program 19.

In short: all musical features are written with sequences of characters.
A tune, which is written in an ABC file, consists of two parts: a header and a body. The
header contains information about the tune such as the title, author, key, etc.; these pieces of
information are written in fields. The body of the tune contains the music.
An ABC file may contain several tunes, separated by one or more blank lines. Each tune has its
own header and body. Some fields can also appear in the body. The file containing ABC music
is also called the source of the tunes.
Strictly speaking, commands for low-level details are not part of the notation. In fact, ABC

was designed for a high-level description of tunes, with no special instructions for typesetting
or sound output. That said, ABC 2 provides commands for specifying such details; these will
be examined in Section 4.1.
If you don’t have a US keyboard, some important characters may be missing. To obtain these
characters under Windows, turn the numeric keypad on, keep the Alt key pressed and type
some digits:

• Alt-126 to get the tilde ˜ ;

• Alt-009 to get a tab character;

• Alt-096 to get an inverted accent ‘ .

• Alt-123 to get an open curly bracket { ;

• Alt-125 to get a closed curly bracket } ;

• Alt-091 to get an open square bracket [;

• Alt-092 to get a closed square bracket] .

8 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

1.2.3 Our First Score

When the programs are installed, we are ready to write our first score. As our first example,
we shall write the C major scale and study the source carefully.
In the following, I’ll describe the very basics of ABC usage: the command-line interface, plus
an editor. You will see that it’s not that difficult after all. Anyhow, remember that you can use
the MandolinTab online converter.
There’s a very important detail to stress beforehand. Whenever you write an ABC file, you’ll
have to choose a file name. Any file name will do, but:

! Very important!
do not use file names containing spaces!

That is: instead of, say, My music file.abc, you must write My-music-file.abc or My-
MusicFile.abc. It’s very important, because abcm2ps cannot easily use filenames containing
spaces. Besides, file names containing spaces are not web-friendly either.
Ok? Good, let’s proceed. Commands you must enter are printed in boldface.

Windows. Start the cmd program. (Windows XP: from Start/Run. . . , insert cmd, then click
on “Ok”. Windows 7 and later: start the menu then insert cmd in “Search Programs and Files”.)
A black window will pop up showing a line that reads something like:

C:\Users\Guido>_

The first time, and only the first time you use the command prompt, type this command:

C:\Users\Guido>md abcmusic

and press the Enter key. This command creates a directory (that is, a folder), called abcmusic,
where we will save our ABC files. Now, let’s enter (double click) the folder:

C:\Users\Guido>cd abcmusic
C:\Users\Guido\abcmusic>_

Note that the command prompt changed to confirm that you’ve moved to that folder. Move to
the abcmusic folder before writing tunes.
Let’s now run the notepad editor. In our example, we’ll use the file name scale1.abc.

C:\Users\Guido\abcmusic>notepad scale1.abc

Clic on “Yes” to create a new file, then copy this source verbatim:

X: 1 % start of header
K: C % scale: C major
C D E F G A B c | c d e f g a b c' |

Save it, then switch back to the command prompt.
We are ready to make the PostScript output using abcm2ps:

1.2. GETTING STARTED 9

C:\Users\Guido\abcmusic>abcm2ps -c -O= scale1.abc
abcm2ps-7.8.14 (March 25, 2015)
File scale1.abc
Output written on scale1.ps (1 page, 1 title, 18832 bytes)
C:\Users\Guido\abcmusic>_

To display the PostScript file, launch GSview and open the scale1.ps file that you’ll find in
C:\DocumentsandSettings\user\abcmusic. The score will look like this:

4
4

To convert the score into PDF, select File/Convert. . . in GSview, set pdfwrite as output type,
and choose a dpi resolution; I suggest 600 dpi.

Now, let us make a mistake on purpose: insert the # character instead of the first bar | . Save
and try to convert; you will get this error message:

C:\Users\user\abcmusic>abcm2ps -c -O= scale1.abc
abcm2ps-7.8.14 (March 25, 2015)
File scale1.abc
Error in line 3.16: Bad character

3 C D E F G A B c # c d e f g a b c' |
ˆ

Output written on scale1.ps (1 page, 1 title, 18810 bytes)
C:\Users\user\abcmusic>_

Fix the error in the source, save it and convert it again.

GNU/Linux, Mac OS. Open a terminal window (Ubuntu: Applications/Accessories; Mac
OS X: Applications/Utilities). The first time, and only the first time you use the command
prompt, type this command:

$ mkdir abcmusic

and press the Enter key. This command creates a directory (that is, a folder), called abcmusic,
where we will save our ABC files. Now, let’s enter (double click) the folder:

˜$ cd abcmusic
˜/abcmusic$ _

The command prompt should change to confirm that you’ve moved to that folder. Move to the
abcmusic folder before writing tunes.
Now let’s start an editor. In GNU/Linux systems, it’s likely to be gedit or kate (if it’s not,
please find out). In Mac OS X, it’s simply called edit. The file name is scale1.abc.

˜/abcmusic$ gedit scale1.abc &

10 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

Don’t forget the ampersand & at the end of the line. Copy this source verbatim:

X: 1 % start of header
K: C % scale: C major
C D E F G A B c | c d e f g a b c' |

Save it, then switch back to the command prompt. We are ready to make the PostScript output
using abcm2ps:

˜/abcmusic$ abcm2ps -c -O= scale1.abc
abcm2ps-7.8.14 (March 25, 2015)
File scale1.abc
Output written on scale1.ps (1 page, 1 title, 18832 bytes)
˜/abcmusic$ _

To display the PostScript output, GNU/Linux users have a wide choice of viewers; use xdg-open
if you’re in doubt. Mac OS X has a Preview utility that will automatically open scale1.ps
and convert it into PDF format.

˜/abcmusic$ xdg-open scale1.ps &

The score will look like this:

4
4

Finally, to convert the file into PDF type this command:

˜/abcmusic$ ps2pdf scale1.ps
˜/abcmusic$ _

The file scale1.pdf will be silently created.

Now, let us make a mistake on purpose: insert the # character instead of the first bar | . Save
and try to convert; you will get this error message:

˜/abcmusic$ abcm2ps -c -O= scale1.abc
abcm2ps-7.8.14 (March 25, 2015)
File scale1.abc
Error in line 3.16: Bad character

3 C D E F G A B c # c d e f g a b c' |
ˆ

Output written on scale1.ps (1 page, 1 title, 18810 bytes)
˜/abcmusic$ _

Fix the error in the source, save it and convert it again.

1.2. GETTING STARTED 11

Android (expert users only!) To use ABC software on Android, you will have to install a
terminal emulator beforehand. Please refer to the instructions available at the ABC 2 home
page.
Android users will follow almost the same procedure as GNU/Linux users. The difference is
the lack of Ghostscript for the Android platform: you will have to use SVG output instead.
Once your ABC source is ready, use this command line:

˜/abcmusic$ abcm2ps -c -O= -X scale1.abc
abcm2ps-7.8.14 (March 25, 2015)
File scale1.abc
Output written on scale1.xhtml (1 page, 1 title, 5782 bytes)
˜/abcmusic$ _

please note the -X switch: it tells abcm2ps to produce SVG output in a file called scale1.xhtml.
To browse this file, just open it with a web browser.
Let us now examine what we wrote in the source. It starts with two header fields: X:, index,
and K:, key; both upper-case. These are the only obligatory fields. X: is always followed by
a number, which is used to identify the tunes written in a file. The % character begins a
comment; everything that follows % till the end of the line is ignored.
Fields may contain spaces. X:1 and X: 1 are equivalent.
The K: field specifies the tune key; C stands for “C major”. In some countries, notes are
written as “do (ut) re mi fa sol la si (ti)”; if you live in such a country, you may want to
consult Table 1.1 that compares notes written in English and in Italian notation. I call it “Italian
notation” since it was introduced by medieval Italian composer Guido d’Arezzo.

Italian note English note

Do C
Re D
Mi E
Fa F
Sol G
La A
Si B

Table 1.1: Comparison between note names in different notations.

The X: field must be the first in the header, while the K: field must be the last. Other fields
may be inserted in any order between X: and K:.
The next line in the source starts the body of the tune, containing the notes. Upper-case letters
correspond to the central octave, while lower-case letters one octave higher. The | character
inserts a measure bar, which can be entered at any position. That is, you may write measures
of variable length, more than or less than the value specified by the metre.
The last c is followed by an apostrophe, which denotes an octave higher. Note that abcm2ps,
by default, automatically set the metre as four quarters, and the note length as eighths.

12 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

It wasn’t difficult, was it? We are now ready to study all the details that will enable us to typeset
beautiful scores.

b Note
If you use “do re mi. . . ”, the main hurdle is getting used to “C D E. . . ” A trick I used was
memorizing the notes as “doC”, “reD”, “miE”, “faF”, “solG”, “laA”, “siB” and the reverse.

Homework time. Try and write some ABC files as an exercise. Type random notes if you wish,
but get used to writing, saving, converting, and viewing tunes. I suggest that you do your
exercises at the end of each of the following sections.

� � � � � � �

Chapter 2

Melody

2.1 Notes and Symbols

THIS part of the manual deals with basic characteristics of notes: pitch, length, accidentals,
dots, ties, slurs, tuplets, chords, grace notes, and expression symbols.

b Note
In some of the following examples, formatting parameters were removed from the sources for
clarity.

2.1.1 Pitch: A-G a-g ,’

The following source (scale2.abc) shows how to obtain notes under and above the staff, i.e.
notes that sit on ledger lines; the scale is C major. Instead of just writing K:C as in the previous
example, we’ll add a small bit of code which will be further explained in Section 2.2.1. K:C
treble, besides specifying C major, forces the treble clef. In this example it must be specified
because there are several notes much below the staff, and abcm2ps would set the bass clef by
default. Convert the source without -c:

X: 1
K: C treble
% C major, four octaves:
C, D, E, F, G, A, B, C | C D E F G A B c |
c d e f g a b c' | c' e' g' c'' |

4
4

13

14 CHAPTER 2. MELODY

The rule is: if a note is followed by one or more commas, it goes down one or more octaves; if
it is followed by one or more apostrophes, it goes up one or more octaves.1

Note another important detail: we wrote two lines of ABC notes, which produced two lines of
music. This is one of the basic rules of the ABC notation: a new line in the source starts a new
line in the score. Exceptions will be examined in Section 2.1.13.
In the above example, note spacing is too wide; a single line would probably look better. We
can instruct abcm2ps to ignore line breaks and try and format the measures optimally. This is
done with -c in the command line.
We’ll now reformat the file using -c:

$ abcm2ps -O= -c scale2.abc

4
4

The bass clef is automatically set when we start a piece of music with low notes (F, and
below). The treble clef is then set by abcm2ps for higher notes:

X: 1
M: 4/4
L: 1/8
K: C
%
C,, D,, E,, F,, G,, A,, B,, C,|C, D, E, F, G, A, B, C|
C D E F G A B c|c d e f g a b c'|

4
4

2.1.2 Note Length: L:

Unless otherwise indicated, the note length is automatically set in accordance to the tune metre.
The rule is: if the value of the metre is greater than or equal to 0.75, the default note length
will be one eighth; if it is less than 0.75, one sixteenth. For example, when the metre is 4/4 the
value is 1 (4 divided by 4 is 1), so the note length will be one eighth; if the metre is 3/4 = 0.75,
again one eighth; if the metre is 2/4 = 0.5, the note length will be one sixteenth. By default, the
metre is 4/4 and the note length is one eighth.

1Experts will notice some resemblance to the Helmholtz pitch notation, shifted two octaves.

2.1. NOTES AND SYMBOLS 15

The L: field is used to modify the default note length, specifying a value as in L:1/4. (To
change the metre, the M: field is used; see Section 2.2.2.)
In addition, L: may contain a “keyword”, auto. In this case, note lengths are adjusted to fill a
measure. This option does not work with abc2midi, so you may want to avoid it.
To double, triple etc. the length of a note, you write the number 2, 3, etc. immediately after.
To divide the value of a note by 2, 4 etc., you write /2 , /4 , /8 . . . or, equivalently, / ,
// , /// . . . Spaces between the note and the digit or the slash are not allowed. Let us see an

example:

X: 1
L: 1/4
K: C
C16|C8|C4|D2 D2|E0 E E F/ F/ F/ F/|
G3 G// G/4 G/8 G/8 G/16 G/16 G/16 G/32 G/32 |
% automatic length
L:auto
c | cc | cccc | cccc cccc |

4
4

Note that abcm2ps supports notes as short as 1/128 and longer than a whole note! The first
note in the example is called a longa, and its length is four whole notes. The second note is a
brevis, two whole notes. The spacing between notes is proportional to their length. (We shall
see in Section 4.1 how to make the spacing of notes constant instead of proportional.) Another
weird note is the first E in measure 5: the trailing 0 denotes a stemless quarter note.2

Spaces between notes and measure bars can be freely inserted when the notes are longer than
one eighth, and are used to improve the readability of the source. But spaces between notes
whose length is equal or lesser than one eighth are not optional. If these notes are not separated
by spaces, they will be grouped under a beam:

X: 1
K: C
M: 4/4
%
C D E F CDEF | C D E F C/D/E/F/G/A/B/c/ |
c/B/A/G/ F/E/D/C/ C4 |

2these peculiar note lengths are sometimes found in early music.

16 CHAPTER 2. MELODY

4
4

2.1.3 Rests and Spacing: z Z x y

Rests are indicated by the character z (lowercase zed). The same rules for note length apply
to rests too, which can also be longer than a whole and as short as 1/128.
To notate multi-measure rests, you use Z (uppercase zed) followed by the number of measures
you want to skip:

X: 1
L: 1/4
K: C
Z12|z16|z8|z4|C2 z2|C z C z|
C z/ z/ C z//z//z///z///z///z////z////|

4
4

12

The characters x and y denote, respectively, invisible rests and additional spacing:

X: 1
L: 1/4
K: C
C D E/E/E/E/ F/F/F/F/|C D E/E/E/yyE/ F/yF/yF/yF/ yyyy|xxxG|

4
4

y can be followed by a width in points; default is 20 points. This unit of measurement is
widely used in typography; a “point” (PostScript point) is ≈ 0.353mm.
Invisible rests are often used for transcribing piano music; examples will be shown in Sec-
tion 3.1.2.

2.1.4 Accidentals: ˆ =

Sharp] is denoted by a ˆ before the note, flat [by (underscore), and natural \ by = . Spaces
between the accidental and the note are not allowed. This is the chromatic scale:

X: 1
L: 1/4
K: C
C ˆC D ˆD | E F ˆF G | ˆG A ˆA B | cˆc=cz |
c B _B A | _A G _G F | E _E D _D | C_C=Cz |

2.1. NOTES AND SYMBOLS 17

4
4

Double accidentals are indicated doubling the special character: double sharp]] by ˆˆ and
double flat [[by .
Quarter tone accidentals (microtones) are also available. That is, 1/4 and 3/4 sharps and flats
can be obtained adding / after ˆ or , while 3/4 are obtained adding 3/2:

X: 1
M: 4/4
L: 1/8
K: C
G ˆ/G ˆG ˆ3/2G A4|A _/A _A _3/2A G4|G3 ˆG A4|A3 _A G4|]

4
4

b Note
Unlike normal accidentals, microtonal accidentals don’t propagate across a whole measure.
This is an important thing to remember when you make a MIDI file, to avoid unexpected
results.

2.1.5 Dotted Notes: < >

Notes followed by a dot are printed in two ways. First, by specifying the right length:

X: 1
L: 1/4
K: C
C3D|E3/2 F//G// A B| c3/2 B//A// G>F|E D C z|

4
4

When a note is dotted and the following is halved or vice versa, we are talking of broken
rhythm. It is obtained using the characters > or < between two notes.
When you use > , the first note is dotted (that is, its duration increases by half) and the fol-
lowing note is halved. The opposite with < . To indicate a note followed by two or three dots,
use >> or >>> .

18 CHAPTER 2. MELODY

X: 1
L: 1/4
K: C
CEGc|C > E G >> c|C < E G < c|C/>E/ C/ > E/ C/<E/ C/ < E/|

4
4

b Note
Dotted notes are rendered by abc2midi in a peculiar way; please see Section 5.1.11.

2.1.6 Ties, Slurs, Staccato: - () .

A tie is obtained with the character - (hyphen) between two notes of equal pitch. Slurs are
notated enclosing the notes in parentheses. Finally, the staccato mark is obtained by putting a
dot before the note. Spaces between these symbols and the notes are not allowed.

X: 1
L: 1/4
K: C
.C/ .C/ D - D .E/ .E/|EF-FG|(C/E/G/c/) (c/G/E/C/)|-C2 z2|]

4
4

b Note
Although ties and slurs are graphically very similar, they have a completely different musical
meaning. Avoid the error of using ties to connect notes of different pitch: MIDI output (see
Section 5.1) would be wrong.

Dashed slurs and ties are indicated by a dot before the open parentheses or hyphen sign. Fur-
ther, the slur and tie direction may be specified adding a ’ (above) or , (below):

X: 1
L: 1/4
K: C
.C/ .C/ D .- D .E/ .E/|EF-'FG|.('C/E/G/c/) .(c/G/E/C/)|-C2 z2|]

4
4

2.1. NOTES AND SYMBOLS 19

2.1.7 Tuplets: (n

Triplets, quadruplets, etc. are coded with an open left parenthesis, immediately followed by
the number of notes, then by the notes.
More precisely, the notation is:

• (2 : 2 notes in the time of 3

• (3 : 3 notes in the time of 2

• (4 : 4 notes in the time of 3

• (5 : 5 notes in the time of 〈n〉 (see below)

• (6 : 6 notes in the time of 2

• (7 : 7 notes in the time of 〈n〉

• (8 : 8 notes in the time of 3

• (9 : 9 notes in the time of 〈n〉

The notes in a tuplet must have the same length. If the tune metre is compound, that is 6/8, 9/8,
12/8 etc., 〈n〉 is 3; otherwise, it is 2.
More complex tuplets are coded using the extended notation (〈n〉:〈t〉:〈x〉, which means: put
〈n〉 notes into the time of 〈t〉 for the next 〈x〉 notes. The first parameter is the number printed
over the tuplet. Extended tuplets are used to include notes of different lengths in a tuplet.
If the second parameter is omitted, the syntax is equivalent to that of simple tuplets. If the third
parameter is omitted, it is assumed to be equal to the first. To make things more interesting,
nested tuplets are also possible! In fact, one of the notes can be replaced by a tuplet:

X: 1
M: 2/4
L: 1/8
K: C
(3cde e2 | (6cegczg (3czg |
(3:2:2G4c2 | (3:2:4G2A2Bc | (3:2:6(3GGGA2Bc |]

3 6
3

3 3 3

3

4
2

To fine-grain the printing of tuplet indications, please see Section 4.5.5.

Z Warning
abcMIDI does not support nested tuplets, so you will not be able to hear them.

20 CHAPTER 2. MELODY

2.1.8 Chords: []

Chords are written enclosing the notes in square brackets; spaces between the brackets and the
notes are not allowed. A chord behaves as a single note when you have to add dots, slurs, etc.
That is, it can be preceded by a dot for staccato, or by a symbol, and so on. To tie two chords,
each note is followed by - .
The duration of the chord notes can also be specified adding a number after the closing bracket.

X: 1
L: 1/4
K: C
CE [C2G] c| .[CEGc][C2D2G2c2] ([C/E/G/c/][E/a/B/e/])|
DˆFAd|[DˆFAd][DˆFAd]>[DˆFAd][DˆFAd]|[C2-E2-G2-][CEG]z|

4
4

Z Warning
Do not mistake chords for something completely different! If you want to get something like
this:

please note that these are not chords, but different voices on the same staff. This will be the
subject of Section 3.1.

Please note the chord in the first measure. Although abcm2ps will allow you to write chords
containing notes of different length, doing so is not recommended because other ABC pro-
grams do not support this feature.

2.1.9 Lyrics: W: w:

Lyrics can be added at the end of the tune, or aligned with the notes under the staff. In the first
case, at the end of the body you add lines that start with the W: (upper case) field, followed by
the lyrics.
Note-aligned lyrics are obviously more complex to write. Immediately after a line of music,
you write one or more lines that start with the w: (lower case) field, followed by the lyrics split
in syllables. Alignment rules are:

• the - character (hyphen) separates syllables of a word. If it is separated from the previ-
ous syllable by a space, a note is skipped. 〈n〉 - characters separated from the previous
syllable skip 〈n〉 notes. Spaces after the - have no effect, and can be used for better
legibility;

• | skips to the next measure;

2.1. NOTES AND SYMBOLS 21

• (underscore) the last syllable is sung for an extra note, and a horizontal line is drawn;

• * skips a note;

• ˜ (tilde) joins two syllables under a note;

• \- inserts a - character;

• \ continuation character; the next w: line continues the same line of lyrics.

The following tune is “Happy Birthday” in Italian:

X: 1
M: 3/4
K: F
C> C | D2C2F2 | E2-E z C> C | D2C2G2 | F2-F z C> C |
w: tan- ti˜au- gu- ri a te,_ tan- ti˜au- gu- ri a te, * tan- ti˜au-
c2A2F2 | E2D z B> B | A2F2G2 | F6 |]
w: gu- ri fe- li- ci, tan- ti˜au- gu- ri a te!
%
W: Tanti auguri a te, tanti auguri a te,
W: tanti auguri felici, tanti auguri a te!

tan ti au gu ri a te, tan ti au gu ri a

4
3

te, tan ti au gu ri fe li ci, tan ti au gu ri a te!

Tanti auguri a te, tanti auguri a te,
tanti auguri felici, tanti auguri a te!

Beware of the difference between - (hyphen) and (underscore). Usually, - is used to skip
syllables within a word, while is used at the end of a word. For instance:

X: 1
L: 1/4
K: C
CDEF|GAGF|EFED|C/D/C/B,/ C2|
w: A ---ve___ Ma___ri ---a.

A ve Ma ri a.

4
4

In the third measure, - (hyphen) should be used.

22 CHAPTER 2. MELODY

If a w: line contains digits, these will not be aligned with the notes but moved a bit to the left;
this feature is used to enumerate subsequent w: lines. The digit must be followed by a ˜ and
joined with the following syllable. If you want to align digits with notes (i.e. for fingerings),
all you have to do is insert a ˜ character just before the number.

X: 1
L: 1/4
K: C
CDEF|GABc|c2z2|z4|
w: 1.˜do re mi fa sol la si do doooo
w: 2.˜˜˜la la la la 1 2 ˜3 ˜4 laaaa

1. do re mi fa sol la si do doooo

2. la la la la 1 2 3 4 laaaa

4
4

Accidentals can be written in all strings, including w: lines, using special codes: \201 prints],
\202 prints [, and \203 prints \.

! Very important!
Take special care to write a number of syllables that matches the number of notes! Mismatch
between notes and syllables is one of the most common causes of error.

2.1.10 Foreign Characters

As long as you write lyrics in English, no problem. Things may get tricky when you have to
write lyrics in foreign languages like Italian, German, Hungarian. . . you will need accented
characters that don’t appear on standard US keyboards.

The problem is solved by using special character sequences: you start with \ , then a special
character, then the character to be altered. These sets of characters are called backslash se-
quences. It is easier to do than to explain: please see Table 2.1. Note the difference between
the acute ’ (ASCII 39) and grave ‘ (ASCII 96) accents.
A complete table of symbols is shown in Appendix A.4.

Letter Sequence

à è á é \`a \`e \'a \'e
Ü ü ë ö \"U \"u \"e \"o
Ñ ñ \˜N \˜n
ß ø Ø å Å \ss \/o \/O \aa \AA
Ô ô ç Ç \ˆO \ˆo \cc \cC
Æ Œ æ œ \AE \OE \ae \oe

Table 2.1: How to obtain characters of foreign languages.

2.1. NOTES AND SYMBOLS 23

Typing Accented Letters: Beware!

Let’s suppose that your computer keyboard, like mine, provides accented letters: you’ll want
to use them instead of backslash sequences. There’s a catch, though.
As a matter of fact, not all characters were created equal. Different computers employ different
character encodings: UTF–8, ISO 8859, and many others. A .abc file encoded in, say, UTF–
8, could be partially unreadable on computers that use an ISO encoding; or vice versa. The
problems lies with the accented letters.
Fortunately, abcm2ps converts files encoded in both UTF–8 and ISO 8859. The latter encoding
is currently used by EasyABC, while many editors use UTF–8. At the end of the day the
encoding doesn’t matter, as long as you don’t want to share your files.
If you’re in doubt, type accented letters using backslash sequences: it’s the safest option.

2.1.11 Grace Notes: ˜ {}

The ˜ (tilde) character denotes a generic gracing. Its meaning and method of execution de-
pend on the player’s interpretation. For instance, a fiddler may play a roll or a cut.
To notate grace notes, one or more notes are enclosed in curly brackets before the main note.
To add a slash to a grace note (acciaccatura), the open curly bracket is followed by / , then
by a single note. Grace notes can also be written without tying them to a note.
A grace note length can also be specified. (Music theorists need not apply. . . .) The grace note
length does not depend on L: or M:; it is always 1/8 for a single grace note, 1/16 for two or
more, and 1/32 in bagpipe tunes.3

Chords can also be specified instead of a single grace note; currently, abc2midi can’t play
these “grace chords”.

X: 1
L: 1/4
K: C
˜c2 {/d}c {c2d2}c|{d/c/d/}c {ede}c {fef}c c|
c/{[ceg][gc]}c/c/c/ c/c/{gfedc}c/c/| c2 c {cBAGFED}C|

4
4

To remove the slur joining grace notes to the main note, you use the -G option of abcm2ps, or
a formatting parameter that we’ll see later.

2.1.12 Forcing Line Breaks: !

If you don’t use the -c option of abcm2ps, you can force staff breaks with a single ! character.
In the next example, we will get two lines of music: the first with two measures, the second
with four:

3abcm2ps has special support for Great Highland Bagpipe music, to be explained someday.

24 CHAPTER 2. MELODY

X: 1
L: 1/4
K: C
CDEF|GABc|! CDEF|GABc|cdef|gabc'|

4
4

Needless to say, the above score looks awful. . . forcing line breaks should be done with care
to avoid ugly results.

2.1.13 Avoiding Line Breaks: \

Usually, 〈n〉 measures in a source line produce 〈n〉 measures in the score. Sometimes is not
convenient to write, say, six measures on the same line, because the source becomes less read-
able. In such cases, the \ character can be added to the end of a line to indicate that the staff
is to be continued. Similarly, a lyrics line (w:) may be broken into several lines in the same
manner. The first part of a music line that ends in \ must be followed by the corresponding
w: line, if any.
The following example yields two staves, four measures each. Do not use the -c switch:

X: 1
L: 1/4
K: C
CDEC|CDEC|EFGz| % continues
w: Are you slee-ping, Are you slee-ping, Bro-ther John! % continues
EFGz|
w: Bro-ther John!
G/ A/ G/ F/ EC|G/ A/ G/ F/ EC| % continues
w: Mor-ning bells are rin-ging, Mor-ning bells are rin-ging, % continues
DG,Cz|DG,Cz|]
w: ding ding dong, ding ding dong!

Are you slee ping, Are you slee ping, Bro ther John! Bro ther John!

4
4

Mor ning bells are rin ging, Mor ning bells are rin ging, ding ding dong, ding ding dong!

2.2. MUSIC PROPERTIES 25

2.1.14 Inline Fields

When one wants to change metre or other music properties, a new field is entered on a line
on its own. However, there’s another method that avoids splitting the music into lines: inline
fields.
Inline fields are inserted enclosing a field in square brackets, with no leading and trailing
spaces. Inline fields are used in this example to change the note length and the meter:

X: 1
L: 1/4
M: C
K: C
CDEF|GABc| [M:6/8][L:1/8] CDE FFF|GAB c2 z|

8
6

2.2 Music Properties

2.2.1 Key signatures and Clefs: K:

So far, we have written our examples in treble clef and C major scale. The K: field may be
used to alter both the key signature and the clef.

Key Signatures

K: must be followed by a note name in upper case, followed by m or min when the mode is
minor. Accidentals are written as # for] and b for [; e.g. Bb, or F#m.
I remind you the simple rule to find out the major key according to the number of sharps or
flats: one tone higher than the last sharp note, or one fourth below the last flat note. For your
convenience, Table 2.2 shows the keys that correspond to a specified number of sharps or flats.
Peculiar key signatures are K:HP and K:Hp, which are used for Great Highland Bagpipe music.
K:Hp marks the staff with F], C] and G\; both force note beams to go downwards.
Western classical music only uses major and minor modes, but others exist that are still used
in other musical traditions. A case in point is Irish traditional music, which widely employs
modal scales. I am not going to explain what they are; suffice it to say that you may come
across strange key signatures such as AMix or EDor, that is “A Mixolydian” and “E Dorian”.
Table 2.3 lists them all.
Explicit accidentals can also be specified by appending them to the key signature. For exam-
ple, K:D exp =c ˆg would set the key of D major but mark every C as natural, and every
G as sharp.4 Lower case letters must be used, separated by spaces. When present, explicit

accidentals always override the accidentals in the key signature.

4The keyword exp may be omitted, but abc2midi needs it.

26 CHAPTER 2. MELODY

Keys with sharps Keys with flats

none: C (Am)
1 sharp: G (Em) 1 flat: F (Dm)
2 sharps: D (Bm) 2 flats: B[(Gm)
3 sharps: A (F]m) 3 flats: E[(Cm)
4 sharps: E (C]m) 4 flats: A[(Fm)
5 sharps: B (G]m) 5 flats: D[(B[m)
6 sharps: F] (D]m) 6 flats: G[(E[m)
7 sharps: C] (A]m) 7 flats: C[(A[m)

Table 2.2: Correspondence between the key and the number of sharps or flats.

Sharps / Major Minor Mixolydian Dorian Phrygian Lydian Locrian
Flats Ionian Aeolian

7 sharps C# A#m G#Mix D#Dor E#Phr F#Lyd B#Loc
6 sharps F# D#m C#Mix G#Dor A#Phr BLyd E#Loc
5 sharps B G#m F#Mix C#Dor D#Phr ELyd A#Loc
4 sharps E C#m BMix F#Dor G#Phr ALyd D#Loc
3 sharps A F#m EMix BDor C#Phr DLyd G#Loc
2 sharps D Bm AMix EDor F#Phr GLyd C#Loc
1 sharp G Em DMix ADor BPhr CLyd F#Loc
0 sharps C Am GMix DDor EPhr FLyd BLoc
1 flat F Dm CMix GDor APhr BbLyd ELoc
2 flats Bb Gm FMix CDor DPhr EbLyd ALoc
3 flats Eb Cm BbMix FDor GPhr AbLyd DLoc
4 flats Ab Fm EbMix BbDor CPhr DbLyd GLoc
5 flats Db Bbm AbMix EbDor FPhr GbLyd CLoc
6 flats Gb Ebm DbMix AbDor BbPhr CbLyd FLoc
7 flats Cb Abm GbMix DbDor EbPhr FbLyd BbLoc

Table 2.3: Modal scales.

The keyword none, meaning “no accidentals”, can also be used; e.g. K: G none.
Since many people don’t have formal music training, I suggest that a comment be added after
the K: field to indicate the number of accidentals: K: AMix % 2 sharps

All Seven Clefs

As we saw in Section 2.1.1, the clef is automatically set by abcm2ps according to the pitch of
the notes it encounters. For example, if you start a tune with notes much below the staff (notes
with commas), abcm2ps will select the bass clef. However, you can set the clef with the K:
field at the start of the tune; you can also choose not to have any clef at all.
The general syntax of the K: field is:

K: 〈key〉 [clef=] [clef type] [line number] [+8] [-8] [transpose=]

2.2. MUSIC PROPERTIES 27

Clef Field

Treble K: treble (default)
Treble, 1 octave below K: treble-8
Treble, 1 octave above K: treble+8
Bass K: bass
Baritone K: bass3
Tenor K: alto4
Alto K: alto
Mezzosoprano K: alto2
Soprano K: alto1
no clef K: clef=none
percussions K: perc

Table 2.4: Clefs and associated K: fields.

[stafflines=〈number〉] [staffscale=〈number〉]

where:

• clef= may be omitted before the clef type when it’s not none;

• clef types can be:

– a note pitch: G or g (treble clef), C or c (alto clef), F or f (bass clef) are
allowed. The specified note will be positioned on the relevant line, as explained
below;

– a clef name: treble, alto, tenor, bass;

– the kwyword none indicates that there is no clef;

– the keyword perc (or, equivalently, the letter p) indicates a clef for percussion
instruments.

• 〈line number〉 indicates the staff line on which the clef is drawn;

• +8 and -8 draws “8” above or below the staff;

• ˆ8 and 8 draws “8” above or below the staff, and performs octave transposition;

• transpose= (or t=) currently does nothing, but is supported by abcMIDI;

• stafflines=〈n〉 sets the number of lines of the associated staff;

• staffscale=〈n〉 sets the scale of the associated staff. Default is 1, maximum value is 3,
minimum is 0.5.

To sum up, available clefs and the corresponding fields are listed in Table 2.4 and in the fol-
lowing example:

28 CHAPTER 2. MELODY

X: 1
L: 1/4
K: C clef=none
CEGc | [K: C treble] CEGc |[K: Cm bass]C,E,G,C |
w: none | treble | bass |
[K: C bass3]C,E,G,C | [K: Cm alto4]CEGc| [K: C alto]CEGc |
w: baritone | tenor | alto |
[K: Cm alto2]CEGc | [K: C alto1]CEGc | [K: perc] cdef |]
w: mezzosoprano | soprano | percussions |
w: +octave indication | octave indication |
[K: C trebleˆ8] CEGc | [K: C treble_8] CEGc |
w: +octave and transposition * | octave and transposition * |

none treble bass

4
4

baritone tenor alto

mezzosoprano soprano percussions

8

+octave indication -octave indication

8

8

8

+octave and transposition -octave and transposition

8

8

The following example shows how the very same notes can be set in different clefs using the
octave field:

X: 1
M: C
L: 1/4
K: C clef=bass
%
CDEF|GABC||
K: C clef=F octave=-1
CDEF|GABc||
K: C clef=C
CDEF|GABc||
K: C clef=G octave=1

2.2. MUSIC PROPERTIES 29

CDEF|GABc||

Bass and Alto Clefs Compatibility Issues

Previous versions of abcm2ps dealed with notes in bass and alto clefs in a peculiar way. abcm-
2ps could automatically transpose the music one or two octaves; besides, in bass clef the two
notes c and C, could be equivalent, depending on the context.
This was quite confusing, and fortunately this scheme is now gone. However, problems may
occur when you come across files that were written for the old scheme. You could see that
some notes are printed one or two octaves higher than expected.
There are three ways to deal with these files:

• the long way: manually change every note to transpose it two octave lower, i.e. change
c to C,;

• the quick and dirty way: include the following command at the beginning of the file:
%%abc2pscompat 1

• the quick and correct way: specify the key using the appropriate clef= field.

I’ll throw in a real-life example. A viola player asked me to transpose some Irish music from
treble to alto clef. The right way to do it was changing the K: field from K: D to K: D alto,
and adding the %%abc2pscompat 1 line before the tunes.

b Note
The %%abc2pscompat command starts with % , so it should be ignored as a comment. It is
not the case; in fact, some commands start with %% and are called meta-comments or pseudo-
comments. They are defined this way for compatibility reasons: applications that don’t support
certain advanced features of ABC can read the same source just ignoring the meta-comments.
We shall examine meta-comments in detail in Section 4.1.

2.2.2 Metre: M:

The M: field specifies the tune metre in different ways:

• as a fraction, i.e. M:4/4 or M:3/4. Complex indications can be used, such as M:5/4
(2/4+3/4) or M:7/8 (3+2+2). There can be no space between digits and the + char-
acter;

30 CHAPTER 2. MELODY

• as an integer value: M:2;

• as a textual indication: M:C or M:C| denote the metre of 4/4 and cut time (“alla breve”).
Ancient metre indications are also supported: M: o (perfect minor), M: o. (perfect ma-
jor), M: c (imperfect minor), M: c. (imperfect major);

• as an explicit measure duration: M:C|=2/1;

• if there is no metre, use M:none.

Needless to say, the metre can change in the middle of a tune. In this case, you insert an inline
M: field in the body:

X: 1
M: C
K: C
L: 1/4
C D E F |G A B c| [M: 3/4] c d e|f g a| [M: 2/4] b c'|cG|EC|

4
3

4
2

The recommended order of fields related to note length is M:, L:, and Q:.

2.2.3 Bars and Repeats: | / : []

In addition to the basic measure bar, others types of bars can be obtained using combinations
of these characters: | , . , [,] , and : .

X: 1
L: 1/4
K: C
CDEF .| GFED [| CDEF |: GFED :|CDEF :: GFED || CDEF [|] GFED
CDEF |[| GFED :::|] CDEF : GFED |]

4
4

Please note that [|] prints nothing; it is an invisible bar, and it can be used as a placeholder
for an ornament. The same can be accomplished using []. Also, note that : is the same as .|.

2.2. MUSIC PROPERTIES 31

To indicate that a section has two (or more) different repeats, use the symbols [1, [2, . . . as in
the following example. When repeats symbols are close to a bar, they can be shortened using
|1, |2, . . . The end of the last repeat is set with ||, or |] if at the end of the tune.

X: 1
L: 1/4
K: C
|: C D E F | G F E D |[1 C2 G2 :|2 C2 C2|| c3 z |]

1 2

4
4

abcm2ps also supports other types of repeats. Not only digits, but also dots, commas, hyphen
signs and text in double quotes can be used:

X: 1
L: 1/4
K: C
|: C D E F |1-3 c d e f :|4,5 C2 G2 :|["last time" C G C z |]

1-3 4,5 last time

4
4

Most commonly, the start repeat bar |: is left out. This is not a problem in printed music, but
abcMIDI is a bit more restrictive and expects to find it. In Section 2.2.8 we will see how to
include |: in the source, but hide it in printed output.

Z Warning
Unfortunately, repeats are a field where incompatibilities between abcm2ps and abcMIDI
emerge:

• to repeat a run of notes three times, |:: ::| will not work. A simple workaround is:
|:|1-3 notes :|.

• text indications in repeat bars (as "last time" above) are not recognised.

2.2.4 Title, Composer, Tempo: T: C: Q:

Our scores still miss something. . . In the next example we introduce the T: (title, subtitle), C:
(composer) and Q: (tempo) fields:

X: 1
T: Happy Birthday % title
T: (Tanti auguri a te) % subtitle

32 CHAPTER 2. MELODY

C: traditional % composer
C: (transcription Guido Gonzato)
M: 3/4
Q: "Allegro" 1/4 = 120 % tempo
K: F
C> C | D2C2F2 | E2-E z C> C | D2C2G2 | F2-F z C> C |
w: Hap-py birth-day to you,_ Hap-py birth-day to you,_ hap-py
c2A2F2 | E2D z _B> B | A2F2G2 | F6 |]
w: birth-day dear fel-low, hap-py birth-day to you!

Happy Birthday
(Tanti auguri a te)

traditional
(transcription Guido Gonzato)

Allegro = 120

Hap py birth day to you, Hap py birth day to

4
3

you, hap py birth day dear fel low, hap py birth day to you!

The text indication in the Q: field (“Allegro” in our example) may be omitted. Besides, Q: also
accepts references to previous tempos, as in Q: 3/8 = 1/4.
In Section 4.1 we will learn how to change the title fonts.

2.2.5 Parts: P:

Some tunes are made of different parts, possibly repeated in several ways. To specify the order
in which parts are played, the P: field is used. In the header, this field specifies the order in
which parts should be played; in the body, it marks the beginning of each part.
Part names must be upper-case letters, A . . . Z .

X: 1
T: Song in three parts
L: 1/4
P: AABBC % or: P: A2.B2.C
K: C
[P: A] C D E F|C D E F|G G G G|G2 z2||
[P: B] C E G c|C E G c|c c c c|c2 Cz||
[P: C] C/E/G/c/ C2|C/E/G/c/ C2|C4|]

2.2. MUSIC PROPERTIES 33

Song in three parts

AABBC

A B

4
4

C

Note that when the P: field is used in the header, the part name may be followed by a number
indicating the number of repeats. Thus, P:A3 is the same as P:AAA; P:(AB)3C2 is equivalent
to P:ABABABCC. To make the text more readable, dots may be used to separate the parts.
There you are a more complex example: P:((AB)3.(CD)3)2 is equivalent to P:ABABABCD-
CDCDABABABCDCDCD. Try and count carefully!

! Very important!
P: cannot be inserted within repeats (i.e. |:. . .:|), because abc2midi gets confused and pro-
duces wrong MIDI output.

2.2.6 Accompaniment Chords: ""

In many songbooks, accompaniment chords (say, for the guitar) are notated as “A”, “C7”,
“Dm”, “F#” etc. above the staff. Such chords are notated writing the chord name between
double quotes " immediately before the note.
An accompaniment chord has this format:

〈note〉 [accidental] [type] [/bass note]

The note is A . . . G (upper case only;5) the accidental is indicated with # for], b for [, or
= for natural; the chord type is one of those listed in Table 2.5.

A slash / followed by a note A . . . G denotes either an optional bass note, or a chord inver-
sion. Spaces between the chord and the following note are not allowed. Chord inversion and
optional bass notes are rendered by abc2midi; please refer to Section 5.1.7 for explanations.

X: 1
T: Happy Birthday
T: (version with chords)
C: traditional
M: 3/4
Q: "Allegro" 1/4 = 120 % tempo
K: F
C> C|"F"D2C2F2|"C"E3 z C> C|"C"D2C2G2|
w: Hap-py birth-day to you, Hap-py birth-day to

5lower case is possible, but not recommended; abcMIDI uses it

34 CHAPTER 2. MELODY

Type Meaning

m or min minor
maj major
dim diminished
+ or aug augmented
sus sustained
7, 9, . . . seventh, ninth, ecc.

Table 2.5: Types of accompaniment chords.

"F"F3 z C> C|"F"c2A2F2|"Bb"E2D z B> B|
w: you, hap-py birth-day dear fel-low, hap-py
"F"A2F2"C"G2|"F"F6|]
w: birth-day to you!

Happy Birthday
(version with chords)

traditional

Allegro = 120

Hap py birth day to you, Hap py birth day to

F C C

4
3

you, hap py birth day dear fel low, hap py birth day to you!

F F B F C F

! Very important!
If you need to write accompaniment chords using Italian notes, i.e. "Sol7" instead of "G7",
don’t write them this way. ABC requires that only notes in English notation be used; programs
for translating sources into MIDI files conform to this standard. However, abcm2ps has a trick
for printing accompaniment chords as Italian notes: please refer to Section 4.5.2.

Multiple chords per note are possible. They can be notated writing two or more consecutive
chords before the same note, or using the separating characters ; or \n :

X: 1
M: 4/4
L: 1/4
K: C
%
"C""G"CCCC|"G""G7"GGGG|"C;C7"CCCC|]

2.2. MUSIC PROPERTIES 35

C

G

G

G7

C

C7

4
4

Although \n is allowed, one should avoid using it and always employ ; instead, since abc-
2midi only supports the latter.

2.2.7 Text Annotations: "ˆ <>@"

Text annotations can be added in different ways. The first method is to write the annotation as
an accompaniment chord; that is, enclosing it between double quotes, but preceding the text
by a special character. Another method is to use the P: (part) field. Finally, Q: fields can be
inserted to specify tempo changes.
Text annotations must begin with one of these special characters: ˆ <>@ . These characters
set the logical difference between an annotation and an accompaniment chord, and specify the
position of the annotation:

• ˆ above the staff;

• below the staff;

• < to the left of the note;

• > to the right of the note;

• @ must be followed by two numbers X and Y, separated by a comma and optionally
followed by a space. The annotation will be printed from the centre of the note head (the
lowest note, if in a chord), with an offset of X horizontal and Y vertical points.

! Very important!
A common mistake is writing text annotations leaving out one of the ˆ <>@ characters. This
“annotation” will be interpreted as an accompaniment chord, which will be almost certainly
malformed and will wreak havoc in both printed and MIDI output.

To include accidentals in text annotations, use \# , \b , and \= ; note the leading \ . Multiple
annotations are notated like multiple chords, as seen in Section 2.2.6.
Let us see an example that uses all methods:

X: 1
Q: "Dolcemente" 1/4=60
L: 1/4
K: C
CDEF|[P:piano]GFED|"ˆabove"CDEF|"_below"GFED|"<left"c'">right"A,DE|
[Q: "sostenuto"] FGC"@-15,5.7 anywhere"D|

36 CHAPTER 2. MELODY

Dolcemente = 60 sostenuto

piano
above

below

left

right

anywhere4
4

Figured Bass

Most symbols of figured bass notation can be written using s: lines, containing text annota-
tions instead of symbols:

X: 1
T: Figured Bass
M: none
L: 1/4
K: C bass
%
C,4 C,4 C,4 C,4 C,4 C,4 C,4 C,4 C,4]
s: "_6;4" "_#" "_6

¯
;"
¯
"_6+" "_6-" "_-" "_\\6" "_/6" "_6 4"

Figured Bass

6

4

b6

b

6+ 6- - \6 /6 6 4

Please note that all annotations have a leading (underscore) character, so they are printed
below the staff.

2.2.8 Ornaments: !symbol!

Ornaments are notated using the general form !symbol!: the ornament name (ff , ppp, cresc.. . .)
enclosed in exclamation marks. Ornaments, also known as “embellishments” or “decorations”,
are written immediately before the note; two or more ornaments per note are possible. Most
ornaments can also be applied to grace notes or measure bars.

X: 1
M: 4/4
L: 1/4
K: C
%
!p!GGG!>!!f!G|!segno!GG!trill!G2|!coda!GGG!fine!G|

4
4

p f

tr FINE

2.2. MUSIC PROPERTIES 37

As shown above, some symbols are printed above the staff by default, while others are printed
under the staff. Forcing ornaments under or above the staff is possible; please refer to Sec-
tion 4.1.
Supported ornaments are listed in Figure 2.1. You will probably notice that some symbols you
need are missing. Don’t worry: new symbols can be added, as we will see in Section 4.5.

Dynamics

!<(! !<)! !>(! !>)! !crescendo(! !crescendo)! !diminuendo(! !diminuendo)! !f! !ff! !fff! !ffff! !mf! !mp!

f ff fff ffff mf mp

Fingering

!p! !pp! !ppp! !pppp! !sfz! !0! !1! !2! !3! !4! !5! !slide! !snap! !thumb!

p pp ppp pppp sfz
0 1 2 3 4 5

Tune parts Beams & measure bars

!D.C.! !D.S.! !coda! !fine! !segno! !beambr1! !beambr2!

1-2
D.C. D.S. FINE

Others

!beamon! !rbstop! !longphrase! !mediumphrase! !shortphrase! !/! !//! !///! !+! !>! !accent! !arpeggio!

!breath! !dot! !downbow! !upbow! !emphasis! !fermata! !invertedfermata! !gmark! !invisible! !mordent!

,

!lowermordent! !uppermordent! !open! !plus! !pralltriller! !roll! !tenuto!

!trem1! !trem2! !trem3! !trem4! !trill! !trill(! !trill)! !turn! !turnx! !invertedturn! !invertedturnx!

tr

!wedge!

Figure 2.1: Standard expression symbols.

If the tune contains many ornaments, an alternative notation may be handy. After a line of
music, one writes a line that starts with the s: field (or, equivalently, d:). This line will contain
only symbols.

38 CHAPTER 2. MELODY

Rules for matching notes and symbols are those explained in Section 2.1.9. s: lines and note-
linked symbols can be used at the same time.

X: 1
L: 1/4
K: C
C/D/ E/F/ G/A/ B/c/|c/B/ A/G/ F/E/ D/C/|e2!fermata!c2|z4|]
s: !>! !>! * !ff! !p! !mp! * !ff! !>! !>! !>! !ff! * * * !ff! |

4
4

ff p mp ff ff ff

While most symbols just print something over a note and are self-explanatory, some of them
act on multiple notes or other printed elements:

• symbols that include an open parenthesis (in their definition start a multi-note orna-
ment, which is ended by the corresponding symbol with a closed parenthesis) . For
example, !<(! starts a crescendo hairpin, !<)! ends it. The same holds for !>(!, !>)!,
and their long-name counterparts;

• !beambr1! and !beambr2! act on notes connected by beams, leaving only 1 or 2 beams;

• !beamon! prevents a beam from being broken across measures;

• !invisible! makes the next note or measure bar invisible;

• finally, !xstem! will be explained in Section 4.1.2.

The following tune shows a three-times repeat with a hidden start repeat bar:

X: 1
M: 4/4
L: 1/4
K: C
GGGG !invisible!|: |1-3 CDEF |G!rbstop!ABc:|

1-3

4
4

2.2.9 Redefinable Symbols: U:

Most symbol names are quite verbose, and may make the source difficult to read. To solve this
snag, you can assign a single letter to a symbol using the U: field.
The field is followed by an upper-case letter from H to Y or by a lower-case letter from h to
y , then by = , then by the symbol. For example, the following U: fields define T as equivalent

to !trill!, H to !fermata!, and M to !tenuto!:

2.2. MUSIC PROPERTIES 39

Abbreviation Symbol

u !upbow!
v !downbow!
T !trill!
H !fermata!
L !accent! or

!emphasis!
M !lowermordent!
P !uppermordent!
S !segno!
O !coda!

Table 2.6: Standard abbreviations for common symbols.

U: T = !trill!
U: H = !fermata!
U: M = !tenuto!

To reset the definition of a U: field, you use a definition like:

U: T = !nil!
U: H = !nil!
U: M = !nil!

The letters uvTHLMPSO are predefined abbreviations for common symbols; definitions are
shown in Table 2.6.

2.2.10 Information Fields

In Section 1.2.3 I explained that ABC files may contain several tunes. This feature, together
with the ease of use of ABC, spurred the creation of many ABC music archives on the Internet.
As stated before, ABC has become the standard to spread folk and traditional music.
There are fields for describing tune properties such as the source area, rhythm, annotations,
and more. These information fields can be used when browsing a database for a special kind of
music. If you contribute ABC files to public sites such as http://www.thesession.org/, it might
be a good idea to include at least the O:, R:, and D: fields.

A: area. Used to specify an area within the country where the tunes originates. Example:
A:Dublin

B: book. Example: B:Francis O’Neill: "The Dance Music of Ireland" (1907)

D: discography. Example: D:"The Chieftains 4" by The Chieftains

F: file name. Example: F:DrowsyMaggie.abc

http://www.thesession.org/

40 CHAPTER 2. MELODY

G: group. Usually used to specify the instrument on which the tune is played. Example: G:-
whistle, flute

H: history. Example: H:this tune was collected by...

I: information. Example: I:version without ornamentation. The I: field can also re-
place command lines, see Section 4.1.1.

N: notes. Example: N:sometimes spelt "Drowsey Maggie"

O: origin. Used to specify the country of origin of the tune. Example: O:Ireland

R: rhythm. Example: R:Reel

S: source. Used to specify where the ABC tune was found. Example: S:from John Chambers’
site

Z: transcription notes. Example: Z:Transcribed in C, originally in D

All of these fields can be printed in titles by means of the %%titleformat command, or after
the tunes by using %%writehistory and %%infoname.

� � � � � � �

Chapter 3

Harmony

3.1 Polyphony in ABC

SO far, we only have seen melodies: music written for a single voice or instrument. This is
all that ABC 1.6 is able to do—and it is a lot: folk musicians do not need anything more.

Let us now turn our attention to ABC 2 and its extensions for polyphonic music, using choral
pieces for our examples.

3.1.1 Voices and Systems: V:

Let us review a bit of music theory. There can be one or more lines of music on a staff; that is,
one or more voices. Voices belong to one or more instruments, some of which have a single
voice (e.g. woodwinds) or more than one (piano, organ). A set of staves related to instruments
that play together in the piece is called a system.

b Note
abcm2ps allows to typeset music for up to 16 voices, but this limitation can be easily overcome
modifying and recompiling the program sources. Ask your local geek.

We will begin by writing a piece for two voices on two staves. The V: field, followed by a
voice name, indicates that the following music belongs to that voice. The voice name may be
a number or a string (e.g. “Tenor”). The V: field can be written on a line by itself, or enclosed
in square brackets at the start of a note line.

X: 1
T: Brother John
C: Traditional
L: 1/4
K:E
V: 1
EFGE|EFGE|GABz|GABz|B/c/B/A/ GE|B/c/B/A/ GE|
V: 2
z4 |z4 |EFGE|EFGE|GABz |GABz |

41

42 CHAPTER 3. HARMONY

V: 1
FB,Ez |FB,Ez |z4 |z4 |
V: 2
B/c/B/A/ GE|B/c/B/A/ GE|FB,Ez|FB,Ez|

Brother John

Traditional

4
4

4
4

This score was written alternating the lines of voices 1 and 2, as in real sheet music. We could
have written all of the music of voice 1, then all of voice 2: the result would have been the
same.

Z Warning
In multivoice tunes, the P: field must be indicated in the top voice.

We can add some declarations in the header that specify the properties of each voice. The
syntax is:

V: 〈voice name〉 [clef=] [clef type] [name=] [sname=] [merge] [stem=] [up | down | auto]
[gstem=] [up | down | auto] [dyn=] [up | down | auto] [lyrics=] [up | down | auto] [gchord=]
[up | down | auto] [scale=] [staffscale=] [stafflines=]

The voice name may be a digit or a word (e.g. “Tenor”). Possible definitions are:

• clef= specifies the clef of the voice; you use the same parameters examined in Sec-
tion 2.2.1.

• name=〈name〉 or nm=〈name〉 specifies the name that appears at the left of the first staff.

• sname=〈name〉 or snm=〈name〉 specifies the name that appears at the left of all the staves
after the first one.

• merge indicates that this voice belongs to the same staff as the previous voice.

• stem= up, down, or auto forces the note stem direction. The stem= keyword may be
omitted.

3.1. POLYPHONY IN ABC 43

• gstem=〈up〉, down or auto forces the grace note stem direction.

• dyn=〈up〉, down or auto forces the placement of dynamic marks.

• lyrics=〈up〉, down or auto forces the placement of lyrics lines.

• gchord=〈up〉 or down forces the placement of accompaniment chords.

• scale=〈n〉 sets the scale of the voice. Default is 1, maximum value is 2, minimum is
0.5.

• staffscale=〈n〉 sets the scale of the voice and the associated staff. Default is 1, maxi-
mum value is 3, minimum is 0.5.

• stafflines=〈n〉 sets the number of lines of the associated staff.

All of these fields are optional. Here is the same tune with some improvements:

X: 1
T: Brother John
C: Traditional
L: 1/4
V: 1 clef=treble name="Soprano" sname="S"
V: 2 clef=treble name="Contralto" sname="VB"
K: E
%
[V: 1] EFGE|EFGE|GABz|GABz|B/c/B/A/ GE|B/c/B/A/ GE|
[V: 2] z4 |z4 |EFGE|EFGE|GABz |GABz |
%
[V: 1] FB,Ez |FB,Ez |z4 |z4 |
[V: 2] B/c/B/A/ GE|B/c/B/A/ GE|FB,Ez|FB,Ez|

Brother John

Traditional

Contralto

Soprano 4
4

4
4

VB

S

Fancy staves can be obtained using staffscale and stafflines. Percussion notes (cross-
shaped note heads) are obtained using sharps:

44 CHAPTER 3. HARMONY

X: 1
T: Special Staves
M: 4/4
L: 1/4
V: 1 stafflines=6 staffscale=0.7
V: 2 stafflines=4 scale=1.2
V: 3 stafflines=1 staffscale=1.4 perc
K: C
%
[V:1] "ˆ6 staff lines, staffscale=0.7"CDEF|GABc|cBAG|FEDC|
[V:2] "ˆ4 staff lines, staffscale=1, scale=1.2"CCCC|GGGG|EEEE|G2z2|
[V:3] "ˆ1 staff line, staffscale=1.4"ˆc/ˆc/ˆc/ˆc/ ˆc/ˆc/ˆc/ˆc/|z4| \

ˆc/ˆc/ˆc/ˆc/ ˆc/ˆc/ˆc/ˆc/|cccc|

Special Staves

6 staff lines, staffscale=0.7

4 staff lines, staffscale=1, scale=1.2

1 staff line, staffscale=1.4

4
4

4
4

4
4

3.1.2 Positioning Voices: %%staves and %%score

A polyphonic piece is played by several instruments, which have one or two staves associated
to them. One or more voices belong to each staff. To specify how voices and instruments are
positioned on the score, you use either the %%staves or %%score command. They are basically
equivalent, with one exception I shall explain later on.
The %%staves command must be followed by voice names, optionally enclosed by a pair of
delimiters: [], {}, and (). As other commands in the header, %%staves must appear before
K:. In the tune body, if voices exist that were not declared in the header, they will be ignored.
The delimiters are used following these rules:

• when voices are not enclosed by any delimiter, they will be simply printed on separate
staves. The uppermost voice in the system will be the first voice in the list. For example:
%%staves SATB

• when two or more voices are enclosed in square brackets, their staves will be joined
by a thick bracket. This arrangement is often used for the choral part of a system. For
example: %%staves [SATB]

• when two or more voices are enclosed in curly brackets, their staves will be joined by

3.1. POLYPHONY IN ABC 45

a bracket. This is typically used for the piano or organ part of a system: %%staves {MS
MD}

• if two or more voices are enclosed between parentheses, they will be printed on the same
staff. For example: %%staves [(SA) (TB)]

• by default, measure bars cross the staves. To keep measure bars within each staff, use
the character | between all voice names: %%staves [S|A|T|B]

The command %%score accepts the same parameters as %%staves, but measure bar indica-
tions work the opposite way: by default, they do not cross the staves. Therefore, %%staves
[S|A|T|B] is the same as %%score [SATB], while %%staves [SATB] is the same as %%score
[S|A|T|B].
When two voices are printed on the same staff, the stem direction indicates the first voice (up)
or the second (down).
Here is an example of piano music. There are three voices, two of which are played with the
left hand. When one of these voices is silent, normal rests are replaced by invisible rests we
studied in Section 2.1.3.

X: 1
T: Studio Op. 10 - N. 3
C: F. Chopin
M: C
%%staves RH1 (LH1 LH2)
V: RH1 clef=treble name="Piano"
V: LH1 clef=bass
V: LH2 clef=bass
K: F
%
[V: RH1] (agfd edcG |A)(dcA BˆFG) (C |
[V: LH1] A,CA,C B,CB,C-|Cz ([ˆD,2ˆF,2][E,G,][D,A,][E,2B,2]|
[V: LH2] F,4 [F,4G,4] |[F,A,] x x2 C,4 |
%
[V: RH1] F2 EF [E4G4]- |
[V: LH1] [F,A,]CA,C C,CB,C|
[V: LH2] x4 x4 |

Studio Op. 10 - N. 3

F. Chopin

Piano

46 CHAPTER 3. HARMONY

Let us now try a more complex piece. These are the first four measures of Mozart’s famous
“Ave Verum”, for organ and SATB:

X: 1
T: Ave Verum
C: W. A. Mozart
M: 4/4
L: 1/4
Q: "Adagio"
%%staves [(S A) (T B)] | (MD1 MD2) (MS1 MS2)
V: S clef=treble name="Soprano" sname="S"
V: A clef=treble name="Alto" sname="A"
V: T clef=bass name="Tenore" sname="T"
V: B clef=bass name="Basso" sname="B"
V: MD1 clef=treble name="Organo"
V: MD2 clef=treble
V: MS1 clef=bass
V: MS2 clef=bass
K: D
%
[V: MD1] (DA,D[CE])|([DF]D[DF][EG])|[FA][DF][Fd][DF]|AˆG=GG |
[V: MD2] x4 |x4 |x4 |E4 |
[V: MS1] F,2F,A, |A,F,A,2- |A,4 |B,4 |
[V: MS2] D,4- |D,4- |D,4- |D,4 |
[V: B] z4 |z4 |D,2D,2 |D,2D,2 |
w: A- ve, A- ve,
[V: T] z4 |z4 |A,2A,2 |B,2B,2 |
[V: A] z4 |z4 |F2F2 |E2E2 |
[V: S] z4 |z4 |A2(dF) |(AˆG)=G2|
w: A- ve, * A - ve,

Ave Verum

W. A. Mozart

Adagio

Organo

Tenore

Basso

Soprano

Alto

A ve, A ve,

A ve, A ve,

4
4

4
4

4
4

4
4

3.1. POLYPHONY IN ABC 47

Note that the voices were intentionally written in reverse order. The %%staves command re-
arranged staves and voices in the right order. Normally, you will want to write voices in the
same order as specified in %%staves.

b Note
The %%staves command is a strong point of the ABC notation compared to graphical pro-
grams. For example, in a four voice score laid out for SATB, you only need to modify the
%%staves command to change the layout to two staves, two voices per staff. With most graph-
ical programs, you would have to rewrite the score from scratch!

In general, writing the voices in the same order as they appear in a real score is preferable.
As a last example, a piece written in an unusual manner: the “Kyrie” from Andrea Gabrieli’s
Missa Brevis. This music has no metre, and each voice follows its own tempo: in this situation
M:none must be used. The length of each measure is different for each voice, consequently the
!longphrase! symbol replaces measure bars. We also want “cut time” tempo indicated. This
is how the piece is written:

%%topmargin 2cm
%%scale 0.7
%%leftmargin 1cm
%%rightmargin 1cm
%%squarebreve 1
X: 1
T: Missa Brevis
C: Andrea Gabrieli (1510? - 1586)
M: C|
L: 1/4
%%staves [1 2 3 4]
V: 1 clef=treble
V: 2 clef=treble
V: 3 clef=treble-8
V: 4 clef=bass
U: L = !longphrase!
K: F
%
[P: Kyrie]
[V: 1] [M:none] F4 c2d2c2LG2 A2B2c2A2G2LF2 G2 c4 =B2 Lc4 z2 G2
w: Ky- ri - e e- lei ---son e- lei --son Ky-
[V: 2] [M:none] Lz8 C4 F2G2 FECD E2 F4 E2C2G2A2G2F2E2
w: Ky- ri - e * * e- lei --son e- lei ---
[V: 3] [M:none] z8 Lz8 F4 c2d2c2G2A2d2f2e2d2c2
w: Ky- ri - e e- lei -----
[V: 4] [M:none] z8 z8 Lz8 C,4 F,2G,2F,2LC,2 D,2E,2
w: Ky- ri - e e- lei -
%
[V: 1] c2d2c2LG2 A2B2A3 GAB c2 d4 c3 B/LA/ G4 A16 |]
w: ri - e e- lei -----------son.
[V: 2] A2 F4 E2F2D2 F4 F2 G3 F LF2 E2 F4 E2 F16 |]
w: ---son Ky- ri- e˜e- lei -----son.

48 CHAPTER 3. HARMONY

[V: 3] A3 =B Lc4 z2 G2c2d2c2LG2 A2_B2G2LA2 c4 c16 |]
w: son__ Ky- ri - e e- lei ----son.
[V: 4] LF,4 z2 C,2F,2G,2F,2LD,2 F,2E,2D,2LB,,2 C,8 F,16|]
w: son Ky- ri - e e- lei ----son.

Missa Brevis

Andrea Gabrieli (1510? - 1586)

Kyrie

Ky ri e e lei son e lei son Ky ri e

Ky ri e e lei son e lei

Ky ri e e lei son

Ky ri e e lei son

8

e lei son.

son Ky ri e e lei son.

Ky ri e e lei son.

Ky ri e e lei son.

8

3.1.3 Voice Splitting: &

In some pieces of music, a voice splits in two in some measures only. To avoid introducing
an additional and almost identical voice, you can use the & symbol. When placed within a
measure, it splits the current voice and attributes the notes that follow to the “second” voice.
This is also called “voice overlay”.

X: 1
L: 1/4
K: C
C>CE>E|G>GG2 & G2E2|C>CE>E|G>GG2 & x2E2|

4
4

To end a voice overlay, &) may be used.

3.1. POLYPHONY IN ABC 49

The above piece can be equivalently written as:

X: 1
L: 1/4
%%staves (1 2)
K: C
[V:1] C>CE>E|G>GG2|C>CE>E|G>Gc2|
[V:2] x4 |G2E2 |x4 |x2E2 |

which is more verbose.

3.1.4 Change of System

In pieces of some complexity (say, for soloist, choir, and orchestra), not all instruments play at
the same time. Writing all parts, mostly containing rests, would be a waste of time and space
when only one instrument is playing.
The %%staves field can be changed as needed, specifying only the voices that are actually
playing. Here is as example “Riu riu chiu”, a well-known 16th century villancico. The result
is shown in Figure 3.1.
The %%vskip 0 command is used to make a small vertical break between parts. %%vskip
always inserts a break, even if one specifies 0.
Please note that strange \241 in the title. It is the octal code of the ¡ character: we will cover
this topic in Appendix A.4.

%%scale 0.6
%%barsperstaff 6
X: 1
T: Riu, riu, chiu, \241la guarda ribera!
C: Villancico (Spain, XVIth century)
M: C|
L: 1/2
Q: 1/2 = 240
%%staves 3
V: 3 clef=treble-8 name="Tenor\nBass"
K: Am
% men only
[V: 3] [M:none] AAGA|F2ED2EFG|A2A2|
w: Ri-u, ri-u, chi-u, \241la guar-da ri-be-ra!
[V: 3] AAGA |F2EG2GEF|D2D2|
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra,
[V: 3] AAGA |F2EG2GEF|D2D2|
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra.
% CHANGE OF SYSTEM: everyone
%%vskip 0
%%staves [1 2 3 4]
V: 1 clef=treble name="S" sname="S"
V: 2 clef=treble name="A" sname="A"

50 CHAPTER 3. HARMONY

V: 3 clef=treble-8 name="T" sname="T"
V: 4 clef=bass name="B" sname="B"
[V: 1]AAGA|F2ED2EFG |A2A2z2|
w: Ri-u, ri-u, chi-u, \241la guar-da ri-be-ra!
[V: 2]FFEC|D2EF2EDD |C2C2z2|
[V: 3]cccG|A2AA2ADD |E2E2z2|
w: Ri-u, ri-u, chi-u, \241la guar-da ri-be-ra!
[V: 4]F,F,C,F,|D,2A,,D,2C,_B,,B,,|A,,2A,,2z2|
%
[V: 1] z4 |AAGA |F2EF2FEE|D2D2z2|
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra,
[V: 2] z2EE |DCEC |D2CD2DCC|D2D2z2|
w: Diós guar-dó el lob', el lo-bo de nue-stra cor-de-ra,
[V: 3] ccBc |A2BA |A2AA2AAA|A2A2z2|
w: Diós guar-dó el lo-bo, el lo-bo de nue-stra cor-de-ra,
[V: 4] A,A,G,A,|F,2E,F,|D,2A,,D,2D,A,,A,,|D,2D,2z2|
%
[V: 1] z4 |AAGA |F2ED2DCC |D2D2 |
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra.
[V: 2] z2EE |DCEC |D2CA,2A,A,A,|A,2A,2|
w: Diós guar-dó el lob', el lo-bo de nue-stra cor-de-ra.
[V: 3] ccBc |A2BA |A2AF2FEE |D2D2 |
w: Diós guar-dó el lo-bo, el lo-bo de nue-stra cor-de-ra.
[V: 4] A,A,G,A,|F,2E,F,|D,2A,,D,2D,A,,A,, |D,2D,2 |
% CHANGE OF SYSTEM: men only
%%vskip 0
%%staves 3
[V: 3] AAGA|F2EG2GEF|D4|AAGA|
w: El lo-bo ra-bio-so la qui-so mor-der, Mas Diós po-de-
[V: 3] F2FEGGEF|D4|AAGA|F2FEDEFG|
w: ro-so la su-po de-fen-der; qui so-le ha-ce que no pu-die-sce pe-
[V: 3] A4|AAGA|F2FEGGEF|D2D2|
w: car: ni˜aun o-ri-gi-nal e-sta Vir-gen no tu-vie-ra.

There’s an alternate way to write pieces with a variable number of voices. The command
%%staffnonote 0 hides the voices that don’t contain notes:

X: 1
M: 4/4
L: 1/4
%%staves [S A T]
V: S name="Soprano" sname="S"
V: A name="Alto" sname="A"
V: T name="Tenor" sname="T"
K: G
%%staffnonote 0
[V: S] GABc|GABc|GABc|B3z|
[V: A] GGGG|BBBB|GGGG|D3z|
[V: T] GDGD|GDGD|GGDD|G3z|

3.1. POLYPHONY IN ABC 51

Riu, riu, chiu, ¡la guarda ribera!

Villancico (Spain, XVIth century)

= 240

Tenor

Bass

Ri u, ri u, chi u, ¡la guar da ri be ra! Diós guar dó el lo bo de nue stra cor de ra,8

Diós guar dó el lo bo de nue stra cor de ra.
8

B

T

A

S

Ri u, ri u, chi u, ¡la guar da ri be ra! Diós guar dó el lo bo, el lo bo de nue stra cor

Ri u, ri u, chi u, ¡la guar da ri be ra! Diós guar dó el lo bo de nue stra cor

Diós guar dó el lob’, el lo bo de nue stra cor

8

B

T

A

S

de ra, Diós guar dó el lo bo, el lo bo de nue stra cor de ra.

de ra, Diós guar dó el lo bo de nue stra cor de ra.

de ra, Diós guar dó el lob’, el lo bo de nue stra cor de ra.

8

T

El lo bo ra bio so la qui so mor der, Mas Diós po de ro so la su po de fen der;8

T

qui so le ha ce que no pu die sce pe car: ni aun o ri gi nal e sta Vir gen no tu vie ra.8

Figure 3.1: A piece where the system changes twice.

52 CHAPTER 3. HARMONY

%
[V: S] GABc|dcBA|GABc|d3z|
[V: A] z4|z4|z4|z4|
[V: T] z4|z4|z4|z4|
%
[V: S] GABc|GABc|GABc|B3z|
[V: A] GGGG|BBBB|GGGG|D3z|
[V: T] GDGD|GDGD|GGDD|G3z|

Tenor

Alto

Soprano 4
4

4
4

4
4

S

T

A

S

As you can see, the source is greatly simplified. The disadvantage of this method is that you
must write the source specifying an exact number of bars per line. (e.g. you can’t use the -c
switch).

� � � � � � �

Chapter 4

Page Layout

4.1 Formatting Parameters

WE have learned how to write polyphonic music. Now we will want to set the page layout,
the fonts, etc. abcm2ps has several commands for customising formatting parameters.

These commands are written in the source as meta-comments, or in external files known as
format files. See Section 4.2.
Meta-comments (from now on, commands) are lines that start with %%, like %%staves. These
are written in the header or in the body. There exist several commands: some specify the page
layout, fonts, spacing, and so on. Many commands accept a parameter of one of these types:

• a unit of length in centimeters (cm), inches (in), or points (pt): for instance, 30pt, 1cm,
0.3in;

• a logical value “yes or no”, expressed using the words true or false or, equivalently,
with 1 or 0;

• a string, like Times-Roman 24;

• a number, either integer or real (that is, with decimals).

I remind you that a “point” (PostScript point) is 0.3527̄ mm.
Let us now see a rather complete example. The following piece (the first ten measures of
Mozart’s Ave Verum) contains the most commonly used commands:

% PAGE LAYOUT
%
%%pageheight 29.7cm
%%pagewidth 21cm
%%topmargin 1cm
%%botmargin 1cm
%%leftmargin 1cm
%%rightmargin 1cm
% SPACING
%%topspace 0cm % space before the piece

53

54 CHAPTER 4. PAGE LAYOUT

%%titlespace 0cm % space before the title
%%subtitlespace 0.2cm % space before the subtitle
%%composerspace 0.5cm % space before the composer line
%%musicspace 0.5cm % space before the first staff
%%vocalspace 1.5cm % additional space after lyrics lines
%%sysstaffsep 1cm % space between staves in the same system
%%staffsep 2cm % space between different systems
% FONT
%%titlefont Times-Bold 32
%%subtitlefont Times-Bold 24
%%composerfont Times-Italics 16
%%vocalfont Times-Roman 14 % for lyrics
%%gchordfont Times-Bold 14 % for chords
% MISC
%%measurebox true % measure numbers in a box
%%measurenb 0 % measure numbers at first measure
%%ornament above % expressions above the staff
%%barsperstaff 5 % number of measures per staff
%%scale 0.7 % magnification
%
X: 1
T: Ave Verum
T: per coro e organo
C: W. A. Mozart (1756-1791)
M: 4/4
L: 1/4
Q: "Adagio"
%%staves [(1 2) (3 4)] | (5 6) (7 8)
V: 1 clef=treble name="Soprano" sname="S"
V: 2 clef=treble name="Alto" sname="A"
V: 3 clef=bass name="Tenore" sname="T"
V: 4 clef=bass name="Basso" sname="B"
V: 5 clef=treble name="Organo"
V: 6 clef=treble
V: 7 clef=bass
V: 8 clef=bass
K: D
% 1 - 5
[V: 1] z4 |z4 |A2(dF) |(AˆG)=G2|(GB)(AG) |
w: A- ve,_ a - ve, ve - rum_
[V: 2] z4 |z4 |F2F2 |E2E2 |(EG)(FE) |
[V: 3] z4 |z4 |A,2A,2 |B,2B,2 |A,2A,2 |
w: A- ve, a- ve, ve- rum
[V: 4] z4 |z4 |D,2D,2 |D,2D,2 |C,2C,2 |
[V: 5] (DA,D[CE])|([DF]D[DF][EG])|[FA][DF][Fd][DF]|AˆG=GG |[EG][GB][FA][EG]|
[V: 6] x4 |x4 |x4 |E4 |x4 |
[V: 7] F,2F,A, |A,F,A,2- |A,4 |B,4 |A,4 |
[V: 8] D,4- |D,4- |D,4- |D,4 |C,4 |
% 6 - 10
[V: 1] (GF)F2 |E3E |FFGG |(G2F)F |E4 |

4.1. FORMATTING PARAMETERS 55

w: cor - pus na- tum de Ma- ri- a Vir - gi- ne,
[V: 2] (ED)D2 |C3C |DDEE |(E2D)D |C4 |
[V: 3] A,2A,2 |A,3A,|A,A,A,A, |A,3A, |A,4 |
w: cor- pus na- tum de Ma- ri- a Vir- gi- ne,
[V: 4] D,2D,2 |A,,3A,,|D,D,C,C, |D,3D |A,,4 |
[V: 5] [EG][DF][DF][FA]|AEEA |[FA][df][eg]G|[E2G2][D2F2]|[C4E4]|
[V: 6] x4 |C2C2 |DAAD |x4 |x4 |
[V: 7] A,4 |A,4 |A,3A, |A,4 |x4 |
[V: 8] D,4 |A,,4 |D,2C,2 |D,D,F,D, |A,,A,E,C,|

Ave Verum
per coro e organo

W. A. Mozart (1756-1791)

Adagio

Organo

Tenore

Basso

Soprano

Alto

A ve, a ve, ve rum

A ve, a ve, ve rum

4
4

4
4

4
4

4
4

T

B

S

A

6

cor pus na tum de Ma ri a Vir gi ne,

cor pus na tum de Ma ri a Vir gi ne,

Figure 4.1: Ave Verum with formatting parameters.

56 CHAPTER 4. PAGE LAYOUT

The result is shown in Figure 4.1. Quite a big change, isn’t it? The difference should be clear.
A complete list of available commands is presented in Appendix A.5.

4.1.1 Changing Parameters

Once the parameters are set, their values remain the same throughout the entire piece. But of
course, parameters can be redefined in the body of the tune.
There are two ways to change a parameter: either write a new command line, or an equivalent
I: inline field. This field accepts a special syntax that has the same effect of a command, with
the additional advantage of being able to appear anywhere in the tune body. For example, I:
vocalfont Times-Roman 12 is equivalent to %%vocalfont Times-Roman 12.
Let’s use both methods to change the vocalfont parameter in a tune:
ERROR!

X: 1
T: Silent Night
C: F. Gruber
M: 3/4
Q: "Andante tranquillo"
K: C
%
G>A G E3|G>A G E3|d2 d B2 B|c2 c G3|
%%vocalfont Times-Roman 12
w: A- stro del ciel, Par- gol di- vin, w: mi- te˜A- gnel- lo re- den- tor!
%%vocalfont Times-Italic 12
w: Voi- ci No- ël, ô dou- ce nuit! w: L'é- toile˜est là qui nous con- duit.
%%vocalfont Times-Roman 12
w: Si - lent night! Ho - ly night! All is calm,_ all is bright.

Silent Night

F. Gruber

Andante tranquillo

A stro del ciel, Par gol di vin, mi te A gnel lo re den tor!
Voi ci No ël, ô dou ce nuit! L’é toile est là qui nous con duit.
Si lent night! Ho ly night! All is calm, all is bright.

4
3

This method can also be used to change the font in the same line:

%%font Helvetica
%%font Helvetica-BoldOblique
X: 1
L: 1/4
K: C
CDEF|!ff!GAB!fermata!c|!mf!cBAG|!p!FED!fermata!C|
%%vocalfont Helvetica 12

4.1. FORMATTING PARAMETERS 57

w: la la la la %%vocalfont Helvetica-BoldOblique 13
w: la la la la, la la la la %%vocalfont Helvetica 12
w: la la la la.

la la la la la la la la, la la la la la la la la.

4
4

ff mf p

A better way to change fonts will be explained in Section 4.1.3.

4.1.2 The Grand Staff

In piano music, the most commonly used system consists of two staves. Notes and stems are
allowed to cross them.
The I: staff 〈n〉 field is used to force the position of notes on a specific staff, while !xstem!
draws a stem up to the note on the previous staff. Top and bottom staves are numbered 1 and
2.

X:1
M:C
L:1/4
U: m = !xstem!
K:none
%%staves 1 2
V:1
cc//c//c//c//c2 | [CEGc]2[CEGc]2|
V:2 bass
mC,C,//mC,//C,//mC,//mC,2|m[C,,C,]2[C,,C,]2|
V:1
z4|c/G/[I: staff 2]E,/[I: staff 2]C,/ z2|]
V:2
C,/E,/[I: staff 1]G/[I: staff 1]c/ z2|z4|]

4.1.3 Using Fonts and Text

abcm2ps supports nearly all PostScript fonts, which are listed in Appendix A.7. Three fonts are
especially important: Times, Helvetica, and Courier; all of them have italics and bold variants.

58 CHAPTER 4. PAGE LAYOUT

Times is equivalent to Windows’ Times New Roman, Helvetica is equivalent to Arial, and
Courier to Courier New.
These are predefined fonts, which you can use anytime with any font command. To use other
fonts, you have to declare them inserting the %%font command at the top of the source. Text-
related commands are:

• %%font declares a font;

• %%textfont sets a font;

• %%begintext. . .%%endtext define a range of text lines, which must start with %%;

• %%center centers some text;

• %%vskip inserts the specified vertical space;

• %%sep inserts a short separator.

Here is an example that demonstrates abcm2ps’s capability of alternating text in different fonts
with pieces of music. The result is shown in Figure 4.2.

% declare non-predefined fonts
%%font AvantGarde-Book
%%font Bookman-Light
%
%%titlefont Times-Italic 21
%%musicspace -0.5cm
%%textfont Helvetica 26
%%center Typesetting example
%%vskip 0.4cm
%%textfont Bookman-Light 14
%%begintext justify
%%This is an example of text inserted into an ABC file. This abcm2ps
%%feature allows for the writing of songbooks, music collections or other
%%publications without having to resort to a word processor. Not bad, is
%%it? Now let's write a brief musical example.
%%endtext
X: 1
T: Etude
M: 4/4
L: 1/4
Q: "Dolcemente"
K: C
%
!p!CCGG|AA!mf!G2|!diminuendo(!FFEE|DD!diminuendo)!C2|

%%vskip 0.4cm
%%textfont AvantGarde-Book 14
%%begintext align
%%Now we'll have a look at something more lively. To start with, let's

4.1. FORMATTING PARAMETERS 59

%%switch fonts: from Bookman-Light to AvantGarde-Book. Here is the same
%%Etude with a few small variations to make it more interesting:
%%endtext
X: 2
T: Etude
T: second version
M: 4/4
L: 1/4
Q: "Adagio"
K: C
%
.CDCB,C.GAGFG|A>AG2|.FGFEF.EFEDE|D>DC2|
%%sep 0.4cm 0.4cm 6cm
% the following line increases the character size
%%textfont * 20
%%center End of the example.
%%sep 0.4cm 0.4cm 6cm

Typesetting example

This is an example of text inserted into an ABC file. This abcm2ps feature allows for the writing
of songbooks, music collections or other publications without having to resort to a word
processor. Not bad, is it? Now let’s write a brief musical example.

Etude

Dolcemente

4
4

p mf

Now we’ll have a look at something more lively. To start with, let’s switch fonts: from
Bookman-Light to AvantGarde-Book. Here is the same Etude with a few small variations to
make it more interesting:

Etude

second version

Adagio

4
4

End of the example.

Figure 4.2: Alternating text with music.

60 CHAPTER 4. PAGE LAYOUT

b Note
Virtually all printed music uses Times-Roman or an equivalent font. However, Helvetica is
more readable at equal font size.

To use different fonts in string, you specify an alternate set of fonts with the commands %%set-
font-1, %%setfont-2, %%setfont-3, and %%setfont-4, followed by a font name and a font
size in points. These can be referred to in strings as $1 $2 $3 $4, and have the effect of
changing the text font:

%%setfont-1 Times-Roman 20
%%setfont-2 Times-Italic 26
%%setfont-3 Helvetica-Bold 18
%%setfont-4 AvantGarde-Demi 24
X: 1
K: C
%%text Hello. This is the default font, $1this is font 1,
%%text $2this is font 2, $3this is font 3, $4this is font 4,
%%text $4and now $0let's go back to default font.
CDEFGABc|cdefgabc'|CCDDEEFF|GGAABBcc|
W: It also works in $3W: fields!
W: It's useful to emphasise $0some parts.

Hello. This is the default font, this is font 1,

this is font 2, this is font 3, this is font 4,
and now let’s go back to default font.

4
4

It also works in W: fields!
It’s useful to emphasise some parts.

Figure 4.3: Using different fonts in strings

4.1.4 Voice Scale

Sometimes, one wants to print a voice smaller than others. This can be accomplished using the
I: voicescale command, as in the following example:

X: 1
C:
M: 4/4
L: 1/4

4.1. FORMATTING PARAMETERS 61

%%staves (S T)
K: C
%
% let's make voice S smaller
[V: S] [I: voicescale 0.6] g2 g2|g2 g2|
[V: T] CDEF|GABc|
[V: S] f2 f2|e2 z2|
[V: T] cBAG|FEDC|

4
4

4.1.5 Staff Breaks

To give an indication at the beginning of a piece (for example, the original key signature and
extension), or write a coda, the staff can be interrupted with the %%staffbreak command:

X: 1
L: 1/4
K: C alto4
%
[C,0G0] %%staffbreak 0.3cm "f"
K: C treble
CCEE|GGcc|"ˆal coda"ccee!coda!|fgc2| %%staffbreak 1.5cm
!coda!g2C2|]

al coda

4
4

The letter f that follows %%staffbreak means that the staff break is forced even if it occurs
at the beginning or end of a line.
If the staff is part of a system, then the staff break must be applied to all staves in the system.

4.1.6 Multi-column Output

Text and music can be laid out in multiple columns. The %%multicol start, %%multicol
new and %%multicol end commands define the columns.
%%multicol start saves the current page margins and sets the vertical position for the be-
ginning of a column. At this point you can change the margins and print the material in the
first column.

62 CHAPTER 4. PAGE LAYOUT

%%multicol new moves the vertical position to the beginning of a new column, resetting the
margins. Change the margins again and print the material in this new column. This sequence
may be repeated as many times as you wish.
Finally, %%multicol end reinitializes the page margins to the values prior to %%multicol
start and moves the horizontal position below the columns that were printed.
It sounds difficult, doesn’t it? Don’t worry, it is easier than it sounds. Here is an example:

%%pagewidth 21cm
%%leftmargin 1cm
%%rightmargin 1cm
X: 1
L: 1/4
K: C
CDEF|GABc|cdef|gabc'|
%%multicol start
%%rightmargin 11cm
%%begintext justify
%%Sator arepo tenet opera rotas. Sator arepo tenet opera rotas.
%%Sator arepo tenet opera rotas. Sator arepo tenet opera rotas.
%%endtext
"ˆleft"CDEF|GABc|
%%text Left column (margins: 1, 11)
%%text Width: 21 - 1 - 11 = 9 cm
%%multicol new
%%leftmargin 13cm
%%rightmargin 2cm
%%begintext justify
%%Sator arepo tenet opera rotas. Sator arepo tenet opera rotas.
%%Sator arepo tenet opera rotas.
%%endtext
"ˆright"cdef|gabc'|
%%text Right column (margins: 13, 2)
%%text Width: 21 - 13 - 2 = 6 cm
%%multicol end
CDEF|GABc|cdef|gabc'|

4.1. FORMATTING PARAMETERS 63

4
4

Sator arepo tenet opera rotas. Sator arepo tenet opera
rotas. Sator arepo tenet opera rotas. Sator arepo tenet
opera rotas.

left

Left column (margins: 1, 11)

Width: 21 - 1 - 11 = 9 cm

Sator arepo tenet opera rotas. Sator
arepo tenet opera rotas. Sator arepo
tenet opera rotas.

right

Right column (margins: 13, 2)

Width: 21 - 13 - 2 = 6 cm

4.1.7 Customising Titles

In addition to the plain T: line(s), the tune title may be composed by several fields.
Complex titles are specified using %%titleformat, followed by a set of letters, digits, and
commas. Letters refer to ABC fields, and may be anything in the range A . . . Z ; the corre-
sponding field will be printed. Digits may follow a letter, meaning “0” for centre, “1” for right
align, or “-1” for left align. A comma , forces a newline, and unrecognized characters are
ignored.

%%titleformat T-1 R1, T-1 T-1 C1, H1
X: 1
T: First Title
T: Second Title
T: Last Title, The
C: Anonymous
H: Written many many years ago...
L: 1/4
R: march
K: C
CDEF|GABc|CDEF|GABc|]

First Title march

Second Title

The Last Title

Anonymous

Written many many years ago...

4
4

Note the strange third title. As you can see, it was rearranged to read “The Last Title”. When-
ever abcm2ps finds that the last word of a title starts with a capital letter and it’s preceded by

64 CHAPTER 4. PAGE LAYOUT

a space and a comma, the word is moved to the head of the title. So it’s possible to write titles
like “Bay of Fundy, The”, which sorts alphabetically in a more logical way.
To force the last word to its position (for example, “That’s All, Folks”), write this line before
the tune: %%titletrim 0.

4.1.8 Headers and Footers

The following commands define the text that is to appear automatically on every page: %%hea-
der for the page header, and %%footer for the page footer. These commands, followed by text,
will print it by default centred on the page.
Three areas may be defined: left, centre, and right, each with different text. If you define areas,
the line of text should be enclosed in double quotes. Furthermore, the text may use special
symbols to insert specific information about the piece:

• $d prints date and time of the last modification of the current input file;

• $D prints the current date and time;

• $F prints the name of the current file;

• $I〈x〉 prints the contents of a field (〈x〉 is capital letter, from A to Z);

• $P prints the page number;

• $P0 and $P1 print the page number, but only if it is even or odd;

• $T prints the title of the current tune;

• $V prints abcm2ps- followed by the version number;

• \n starts a second line of text.

The three fields must be separated by a tab character (see Section 1.2.2.) If you use JEDABC,
I suggest that you use the lines %%header and %%footer obtained from the Mode/abcm2ps
Options/page Layout menu, and if necessary, modify them.
Here is an example of the command %%footer used to print the even page numbers on the left,
the name of the piece in the centre, and the odd page numbers on the right. Please note that the
areas are not separated by spaces, but by tabs!

%%footer "$P0 $N $P1"

b Note
If you need to change headers and/or footers after a new page, insert their new definition before
the %%newpage command.

4.2. FORMAT FILES 65

4.1.9 Inserting Graphics Files

Another interesting possibility is the addition of external EPS files in the source, perhaps to
add a logo or a drawing to the score. You use the %%EPS command followed by the name of
the file to insert:

X: 1
T: Testing the use of my logo
K: C
CDEF GABc |cBAG FEDC |
cdef gabc'|c'bag fedc|
%%multicol start
%%leftmargin 1cm
%%rightmargin 10cm
%%text
%%text Beautiful music presented by...
%%multicol new
%%leftmargin 7cm
%%rightmargin 1cm
%%EPS logo.eps
%%multicol end

Testing the use of my logo

4
4

Beautiful music presented by...
GG

abcm2ps will search for logo.eps in the directory containing the .abc sources or the format
files (see below).
If the file to be included is in another standard graphics format (e.g. JPG), you will have to
convert it to EPS using an appropriate program. Please consult Section 7.3.

4.2 Format files

Although you can insert formatting parameters in the source, it may be more practical to write
them in an external file that is used by abcm2ps when it formats the piece. This file is called a
format file.
This is a sample format file:

% format file

scale 0.8

66 CHAPTER 4. PAGE LAYOUT

topmargin 2 cm
titlefont Helvetica-Bold 13
subtitlefont Helvetica-Bold 10
% etc. ..
% end

As you can see, this is nothing more than writing formatting parameters without the leading
double percent characters %% .
To format a piece of music using the format contained in the file example.fmt, that you saved
in the same folder as the source file, use the option -F of abcm2ps in the command line:

abcm2ps -O= -c -F example tune.abc

If you wish, you may specify two or more format files on the same command line.
If you keep your format files in a folder, i.e. c:\music\format, you will also have to specify
the -D parameter followed by the folder name:

abcm2ps -O= -c -D c:\music\format -F example tune.abc

Binary packages for GNU/Linux usually store the format files in /usr/share/abcm2ps. The
following command:

abcm2ps -V

will report the default format file directory.
Using a format file is the best solution when you want to typeset a series of pieces that share
the same style. Moreover, abcm2ps can be extended defining additional symbols, as we will
see in Section 4.5. Format files containing libraries of symbols can thus be employed when
needed.

4.3 Numbering Measures and Pages

Usually, in a piece only the first measure of each line is numbered: this can be done with
%%measurenb 0. To number all measures, use %%measurenb 1, while to put a number every
〈n〉 measures, you use %%measurenb 〈n〉. Measures are numbered starting from 1, unless the
first measure is incomplete (anacrusis); in this case, the anacrusis will count as measure 0.
Page numbering is controlled with the option -N 〈number〉 from the abcm2ps command line.
Possible values are:

• 0: page numbering deactivated.

• 1: page number above on the left.

• 2: page number on the right.

• 3: page number on the left for even pages, on the right for odd pages.

• 4: page number on the right for even pages, on the left for odd pages.

4.4. SAVING SPACE 67

4.3.1 Measure Control

The number of measures per line may be controlled in various ways:

• the most precise is to insert the exact number of measures in each line;

• in most cases, it is fine to just let abcm2ps do the work with the -c option (see Sec-
tion 2.1);

• when you want each staff to contain 〈n〉 measures, use the command %%barsperstaff
〈n〉 in the source or the option -B 〈n〉 in the abcm2ps command line;

• %%alignbars 〈int〉 aligns the bars of the next 〈int〉 lines of music. It only works on
single-voice tunes.

If the last line contains fewer measures that do not extend to the entire width of the page, you
can force the alignment using the command %%stretchlast.
It is generally recommended not to be too concerned with the number of measures per line.
You will be better off concentrating on the music and letting abcm2ps do the formatting with
the -c option.

Z Warning
If you decide to set the number of measures yourself, be careful not to write too many or too
few per line! If you write too few, the score will look ugly; if you write too many, abcm2ps
will rework the line at its discretion.

4.4 Saving Space

Quite often, one wants to print the score on the least possible number of pages. Once the page
layout and the margins have been set, parameters that can reduce the space are:

• first of all, the powerful command %%scale 〈factor〉. By default, the score is produced
with a scaling factor of 0.7. A greater value will enlarge the score, a smaller value will
reduce its size.

• reduce the space between staves with %%staffsep and %%sysstaffsep, and use com-
mands for setting the vertical spacing of title, subtitle, lyrics, etc.

• if the -c option is used, the %%maxshrink 〈factor〉 can be used to reduce the horizontal
spacing between notes. Compression is maximum with 〈factor〉 = 1, minimum with
〈factor〉 = 0.

• to flatten slurs, use the %%slurheight command specifying values lesser than 1;

• sometimes, using %%notespacingfactor along with %%maxshrink might be effective.
Normally, the spacing of notes is proportional to their length, but using %%notespa-
cingfactor 1 all notes are equally spaced.

• in a file containing several tunes, use %%topspace 0.

68 CHAPTER 4. PAGE LAYOUT

Please remember to consider the needs of those who don’t have an eagle-like sharp sight:
printing a score at too small a scale will make life hard for the musicians! Further, bear in
mind that inkjet printers cannot print beyond the the page lower margin of 2 cm.

4.5 Advanced Customisation (Experts Only!)

abcm2ps has a very powerful feature: the possibility to modify and/or add PostScript routines
and new symbols. To do so, the user includes a series of commands that define the new symbol
or routine in the source, using PostScript routines defined in abcm2ps or adding new ones.
It goes without saying that only musician-programmers will be able to use this feature. Fur-
thermore, it is necessary to study the abcm2ps source code and look at the PostScript code it
produces.

4.5.1 New PostScript Routines

The %%postscript command, followed by code in the PostScript language, adds new routines
or redefines existing ones. For example, the following commands redefine the routine dlw so
that all lines in the score will be drawn thinner:

%%postscript /dlw
%%postscript {0.3 setlinewidth} bdef % default: 0.7

so the score looks better at high values of %%scale.
The PostScript routines in abcm2ps are defined in the abcm2ps source file syms.c.
When writing several lines of PostScript code, using the sequence %%beginps. . . %%endps is
recommended.

4.5.2 Accompaniment Chords in Italian Notation

A nice application of %%postscript is the redefinition of the routine that prints accompani-
ment chords, in order to obtain them printed using Italian notes. The following code1 should
be saved in a format file called italian.fmt:

% italian.fmt
% written by Christopher Lane
% for abcm2ps 5.9.*
% (adapted for more abcm2ps versions by Hudson Lacerda)

% -- latin guitar chords
beginps nosvg
/gcshow % string gcshow
-5 0 RM
dup 0 get

1kindly provided by Christopher Lane.

4.5. ADVANCED CUSTOMISATION (EXPERTS ONLY!) 69

dup dup 65 ge exch 71 le and
65 sub [(La) (Si) (Do) (Re) (Mi) (Fa) (Sol)] exch get show
currentfont /Encoding get exch get glyphshow

ifelse
dup length 1 sub 1 exch getinterval
%
dup mark exch (m) search
(di) search cleartomark
length exch pop exch (aj) anchorsearch cleartomark
pop /tempstr 4 2 roll cleartomark
def tempstr exch (-) putinterval tempstr
ifelse

ifelse

cleartomark ifelse

currentdict /gchshow known
/gchshow load cshow %% abcm2ps older than abcm2ps-5.1.0

show %% abcm2ps-5.1.0 or newer
ifelse

!
endps

% End of file italian.fmt

If we add -F italian to the command line, the usual scale will be printed with Italian ac-
companiment chords:

X: 1
L: 1/4
K: C
"C"CDEF|"G"GABc|"A-"A,B,CD|"E-"EFGA|

Do Sol La- Mi-

4
4

4.5.3 Defining New Symbols

The %%deco command adds new expression symbols, using PostScript routines defined by
abcm2ps or possibly new ones written by the user. The syntax is the following:

%%deco 〈name〉 〈type〉 〈ps〉 〈h〉 〈wl〉 〈wr〉 〈string〉

where:

• 〈name〉 is the name of the new symbol, without the exclamation marks;

70 CHAPTER 4. PAGE LAYOUT

• 〈type〉 is an integer that specifies the symbol type. Values from 0 to 2 indicate a symbol
near the note and within the staff, from 3 to 5 near the note but outside of the staff, and
6 and 7 are expressions linked to the staff. To give an idea of symbol positioning, here is
a listing:

– 0: like !tenuto! or the staccato dot;

– 1: like !slide!;

– 2: like !arpeggio!;

– 3, 4: generic expressions;

– 5: like !trill(! or !trill)!;

– 6: generic;

– 7: like long dynamics symbols.

• 〈ps〉 is the name of the PostScript routine that draws the symbol. This may be a user-
defined routine or one provided by abcm2ps;

• 〈h〉 expression height in points;

• 〈wl〉 and 〈wr〉 are not used;

• finally, 〈string〉 is an optional text string.

Let us have a look at an example taken from the file deco.abc supplied with abcm2ps. We
will add a few new symbols for dynamics using the predefined pf routines:

%%deco fp 6 pf 20 0 0 fp
%%deco (f) 6 pf 20 0 0 (f)
%%deco (ff) 6 pf 20 0 0 (ff)
X: 1
T: New symbols
K: C
!fp!CDEF GABc|CDEF !(f)!GABc|!(ff)!CDEF !ff!GABc|

New symbols

4
4

fp (f) (ff) ff

The %%deco line implements three new symbols: !fp!, !(f)!, and !(ff)!.
Let us see another example. The following source adds three new symbols: one note-linked
and two staff-linked, one above the staff and one below. The first symbol !tu! is a triangle-
shaped staccato symbol. !tu! uses the new routine newdot. The other symbols are !rtoe!
and !ltoe! which use the routine toe and add a symbol similar to a ˆ above and below the
staff.

4.5. ADVANCED CUSTOMISATION (EXPERTS ONLY!) 71

%%postscript /newdot % usage: x y newdot
%%postscript M 1.2 2.5 rmoveto -2.4 0 rlineto
%%postscript 1.2 -5 rlineto fill bdef
%%deco tu 0 newdot 5 0 0
%%postscript /toe % usage: x y toe
%%postscript M 5 0 rmoveto
%%postscript -5 5 rlineto -5 -5 rlineto currentpoint stroke
%%postscript bdef
%%deco rtoe 6 toe 5 0 0
%%deco ltoe 3 toe 5 0 0
X: 1
K: C
!tu!C!tu!D!tu!E!tu!F GABc|!ltoe!c'!rtoe!bag .f.e.d.c|!ltoe!C4 z4|]

4
4

4.5.4 Adding Fonts

Standard Ghostscript fonts are usually enough for most users. However, if you wish to add a
special touch to your scores, new fonts can be added. Recent versions of Ghostscript support
both PostScript and TrueType fonts. For more details, please see Appendix A.5.3.
An excellent site boasting a wide collection of free and high-quality PostScript fonts is http:
//www.moorstation.org/typoasis/typoasis1.htm. Under the “Designers” section, select Dieter
Steffmann’s page.
Let us see how to add a new font called Holla Script, downloaded as Holla.zip. Obviously,
the procedure will be very similar with other fonts.
Unzip the archive and copy HollaScript.pfb to the directory containing the Ghostscript
fonts. (Other acceptable file types are those ending in .gsf and .pfa.) Supposing that you
installed Ghostscript and its fonts in default locations, this directory is C:\ProgramFiles\
gs\gs8.71\lib on Windows systems. (If needed, change the version number). On Ubuntu
GNU/Linux and possibly other Unix variants, the directory is /usr/share/fonts/type1/
gsfonts/. If you’re unsure, open a terminal window and type the following command:

$ gs -h

to get a list of directories where Ghostscript searches for fonts.
Now edit Ghostscript’s font list. On Windows, this file is C:\ProgramFiles\gs\gs8.71\
lib\Fontmap (create it if it doesn’t exist), on Ubuntu it is /var/lib/ghostscript/fonts/
Fontmap. Move to the bottom of the file and add this line:

/HollaScript (/usr/share/fonts/type1/gsfonts/HollaScript.pfb) ;

http://www.moorstation.org/typoasis/typoasis1.htm
http://www.moorstation.org/typoasis/typoasis1.htm

72 CHAPTER 4. PAGE LAYOUT

which defines a new font called HollaScript. If you wish, you can also define an alias, i.e.
an alternate name for the same font:

/Jazz /HollaScript ;

We are now ready to use the new font in ABC files. First of all, declare it using the %%font
command followed by the font name. Look at this:

%%font HollaScript
%%titlefont HollaScript 24
%%textfont HollaScript 18
%%composerfont Jazz 16 % alias
%%vocalfont Jazz 16
%%gchordfont Jazz 18
X: 1
T: Test: HollaScript font (Jazz)
L: 1/4
K: C
%
"C"CDEF|"G"GA"G7"Bc|"C"cBAG|"G"FEDC|"C"C4|]
w: Do Re Mi Fa... |||||
%%text ABCDEFGHIJKLMNOPQRSTUVWXYZ
%%text abcdefghijklmnopqrstuvwxyz 1234567890

Test: HollaScript font (Jazz)

Do Re Mi Fa...

C G G7 C G C

4
4

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 1234567890

Bear in mind that some fonts you can find on the Internet are not complete (they may only
have capital letters, or miss some characters); not all are free; and not all are of good quality.

4.5.5 Customising Tuplets

The %%tuplets command allows for fine-grained tuplet indications. The syntax is:

%%tuplets 〈where〉 〈what〉 〈value〉

The parameters are:

• where is a number that indicates where to draw the tuplet indication. 0 = automatic, 1 =
never, 2 = always.

4.5. ADVANCED CUSTOMISATION (EXPERTS ONLY!) 73

• what is a number that indicates what to draw. 0 = draw a bracket, 1 = draw a slur.

• value indicates the number to print. 0 = the value of 〈n〉 in the tuplet, 1 = no value at
all, 2 = a ratio 〈n〉:〈t〉.

Common values are, for instance, I:tuplets 2 0 2 and I:tuplets 2 0 0:

X: 1
T: Tuplets
M: C
L: 1/4
K: none
%
"ˆDefault"(3A/A/A/ "ˆtuplets 1 0 0"[I:tuplets 1 0 0](3A/A/A/ \
"ˆtuplets 2 0 0"[I:tuplets 2 0 0](3A/A/A/ \
"ˆtuplets 0 1 2"[I:tuplets 0 1 2](3A/A/A/|\
"ˆnested - tuplets 2 0 2"[I:tuplets 2 0 2](7:8:8(3A/A/A/ A/A/A/A/A/|z4]

Tuplets

3 3 3:2 3:2

7:8Default
tuplets 1 0 0

tuplets 2 0 0 tuplets 0 1 2
nested - tuplets 2 0 2

4.5.6 Tin Whistle Fingerings

True to the folk music origins of ABC, abcm2ps can print tin whistle fingerings. For those
who don’t know, the tin whistle is a six-holed diatonic fipple flute, widely employed in Irish,
English and other traditional music.

It is cheap, easy to learn (easier than the recorder), and very fun to play. I warmly suggest that
you buy one!

The format file flute.fmt contains fingerings definitions for tin whistles in several keys and
galoubet, a French three-hole fipple flute.
Specify the following parameters on the abcm2ps command line:

-F flute.fmt -T 〈key〉

to obtain fingerings for the whistle in the key of 〈key〉 printed under the staff. The parameter
〈key〉 is a digit corresponding to a key as per the following table:

74 CHAPTER 4. PAGE LAYOUT

Digit Key

1 D
2 C
3 E[
4 B[
5 F
6 G
7 A
8 C (galoubet)

Here is an example. The whistle in the key of D is the most commonly used; we’ll specify the
parameters -F flute.fmt -T1. An excerpt from “Atholl Highlanders”:

X: 1
T: The Atholl Highlanders
M: 6/8
L: 1/8
R: jig
K: AMix
%
|:e2e ecA|ecA Bcd|e2e ecA|Bcd cBA|
e2e ecA|ecA Bcd|eae fed|cdB A3:|

The Atholl Highlanders

W
H

IS
T

L
E

D

8
6

W
H

IS
T

L
E

D

� � � � � � �

Chapter 5

Playing

5.1 MIDI Conversion

AMIDI file is, roughly speaking, an electronic score. It contains instructions that tell MIDI
instruments (or a software MIDI player) what notes to play and how to play them. It is

not as high-level as sheet music; electronic instruments and computers need to be told exactly
what and how to play. Please note that real scores carry a bit of ambiguity. For instance, just
how long a fermata is? MIDI files are not as sophisticated as a human player. Moreover:

! Very important!
while a score in PDF format will look the same on any computer, this does not hold true for
MIDI files! In fact, the quality of a MIDI file output depends on the sound card of the computer
and the player software that is used to listen to it.

Having a MIDI version of your ABC music is convenient, because you get an immediate
feedback of what you wrote. It’s especially true for people who can’t easily read music.
To this end, the free abc2midi program is helpful. Given a tune collection in a file called
file.abc, abc2midi creates a MIDI file for each tune adding the index number of the X:
field to each file name: file1.mid, file2.mid, . . . abc2midi is a command-line program,
but it’s integrated in ABCexplorer and JEDABC.
abc2midi supports up to 16 voices (“channels”, in MIDI lingo) that can play at the same time,
as defined by the MIDI standard. Each channel can be associated one of the standard 128 MIDI
instruments (“programs”), and their loudness (“velocity”) can be controlled independently.
Don’t ask me about the strange terminology.
abc2midi is just one of the programs of the abcMIDI package:

• abc2abc: verification, formatting and transposition of ABC source files;

• midi2abc: conversion of MIDI files to ABC;

• yaps: a command-line formatter analogous to abcm2ps, but less powerful.

Before we start, some information for GNU/Linux users is needed.

75

76 CHAPTER 5. PLAYING

5.1.1 A Software MIDI Player: TiMidity++

Some advanced sound cards have a built-in MIDI syntesizer, but cheap cards usually do not
provide this feature. In this case, some GNU/Linux users may need a software MIDI player.
One of the best is Timidity++ (http://timidity.sourceforge.net/), usually provided by major
GNU/Linux distributions.
Unfortunatley, there’s a catch. By default, TiMidity++ may not provide all 128 MIDI instru-
ments, which are mapped to so-called instrument patches. Simply put, these are files that
provide sounds. Some patches may be missing, which results in MIDI files that apparently do
not play or miss some voices.
Replacing the missing instruments is easy. By default, the configuration files are:

/etc/timidity/timidity.cfg
/etc/timidity/freepats.cfg

The first file should contain a couple of lines that read:

By default, try to use the instrument patches from freepats:
source /etc/timidity/freepats.cfg

To replace a missing instrument, edit the second file. Let’s suppose you miss the instrument 41
(Viola) under the bank 0 section. Add this line:

41 Tone_000/040_Violin.pat

which implements the Viola instrument using the same patch used for violin. Not perfect, but
it works.
An alternate way to provide more instrument patches to TiMidity++ is by installing the pack-
age FluidSynth, http://www.fluidsynth.org, as I did on my Ubuntu machine.

5.1.2 Our First Midi

Do you remember the first scale and the command-line instructions we examined in Sec-
tion 1.2.3? We wrote a very simple ABC source and turned it into PostScript using abcm2ps
from the command line.
In a similar way, we can obtain our first MIDI file. Given the source file scale1.abc (or
another source you want to convert), this command will create the corresponding MIDI file:

abc2midi scale1.abc
Warning in line 2 : No M: in header, using default
writing MIDI file scale11.mid

The new file scale11.mid will be written in the same folder as the source. Warning and/or
error messages will be issued when minor and/or serious problems are found.
By default, the MIDI file name is composed using the source file name followed by a number,
corresponding to the number in the K: field. Double-click on the MIDI file to start the default
player.

http://timidity.sourceforge.net/
http://www.fluidsynth.org

5.1. MIDI CONVERSION 77

5.1.3 Example: How To Make a Ringtone

MIDI files are not very impressive to listen to, but they can be very useful. For example, I
made my own simple ringtone following a few simple steps; I used TiMidity++ to convert the
MIDI file to WAV, then Lame (http://lame.sourceforge.net/) to encode the WAV file to MP3.
First, I wrote the ringtone (Ring.abc):

X:1
M:2/4
L:1/32
Q:1/4=240
K:Amaj
%%MIDI program 1 80
|:ac'ac'ac'ac'ac'ac'ac'ac'|ac'ac'ac'ac'ac'ac'ac'ac'|[L:1/2]z:|

then I ran abc2midi and obtained Ring1.mid. To convert the MIDI file to MP3, I used the
following commands (boldface):

˜$ timidity -A400 -Ow Ring1.mid
Playing Ring1.mid
MIDI file: Ring1.mid
Format: 0 Tracks: 1 Divisions: 480
Sequence: Trillo
Text:
Output Ring1.wav
Playing time: ˜7 seconds
Notes cut: 0
Notes lost totally: 0
˜$ lame Ring1.wav Ring1.mp3
LAME 3.98.4 32bits (http://www.mp3dev.org/)
CPU features: MMX (ASM used), SSE (ASM used), SSE2
Using polyphase lowpass filter, transition band: 16538 Hz - 17071 Hz
Encoding Ring1.wav to Ring1.mp3
Encoding as 44.1 kHz j-stereo MPEG-1 Layer III (11x) 128 kbps qval=3

Frame | CPU time/estim | REAL time/estim | play/CPU | ETA
206/206 (100%)| 0:00/ 0:00| 0:00/ 0:00| 24.460x| 0:00

kbps LR MS % long switch short %
128.0 53.9 46.1 98.5 1.0 0.5

Writing LAME Tag...done
ReplayGain: -2.4dB
˜$ _

Then I transfered Ring1.mp3 to my smartphone.

http://lame.sourceforge.net/

78 CHAPTER 5. PLAYING

b Note
In the following sections, I will include some sound samples. In theory, MIDI files created
by abc2midi should be playable on all computers, but unless you have the same instrument
patches that I use (or compatible ones) there is a chance that you can’t listen to them. Therefore,
all MIDI files were converted to MP3 files with Lame, as shown above.

5.1.4 Supported Ornaments

Some of the ornaments described in Section 2.2.8 are supported by abcMIDI and produce
audible output. These are:

!ppp! !pp! !p! !mp! !mf! !f! !ff! !fff! !breath!
!arpeggio! !crescendo(! !crescendo)! !<(! !<)!
!diminuendo(! !diminuendo)! !>(! !>)!

Default volume is equivalent to !f!.

5.1.5 %%MIDI Commands

Just as abcm2ps provides commands for changing page layout details, abc2midi provides
commands for audio effects.
abc2midi uses meta-comments for its low-level details. To be more precise, only the meta-
comment %%MIDI, followed by different parameters, is actually used.
Commands can be written in two ways. One is the usual meta-comment syntax: a single
line containing %%MIDI 〈command〉 〈parameters〉 is entered. The second way is using
an inline I field: [I:MIDI = 〈command〉 〈parameters〉] (spaces are optional). Note the
= character.
To clarify, the two following sources are equivalent:

X: 1
T: MIDI commands as meta-comments
L: 1/4
K: C
%%MIDI program 1
CDEF|
%%MIDI program 109
GABc|

X: 1
T: MIDI commands as inline I: fields
L: 1/4
K: C
[I:MIDI = program 1] CDEF|[I:MIDI = program 109] GABc|

The second method makes the source more readable.

5.1. MIDI CONVERSION 79

5.1.6 Voices and Instruments

Let us consider “Ave Verum”, which we examined in Section 3.1.2. Converting it with abc-
2midi, we obtain a MIDI file in which the music output is played by the MIDI instrument 1:
acoustic piano. In many cases, we don’t need anything else: to study the part before a concert,
the MIDI is just fine. But abc2midi can do much more.
One of the most important abc2midi commands is %%MIDI program, which associates a voice
with a particular instrument. Let us add these commands to associate each voice with the right
instrument in the Ave Verum:

X: 1
T: Ave Verum
C: W. A. Mozart
M: 4/4
L: 1/4
Q: "Adagio"
%%staves [(S A) (T B)] (MD1 MD2) (MS1 MS2)
V: S clef=treble name="Soprano" sname="S"
V: A clef=treble name="Alto" sname="A"
V: T clef=bass name="Tenor" sname="T"
V: B clef=bass name="Bass" sname="B"
V: MD1 clef=treble name="Organ"
V: MD2 clef=treble
V: MS1 clef=bass
V: MS2 clef=bass
K: D
%
V: S % enable the first track
%%MIDI program 1 53 % Choir Oohs
%%MIDI program 2 53
%%MIDI program 3 53
%%MIDI program 4 53
%%MIDI program 5 19 % Church Organ
%%MIDI program 6 19
%%MIDI program 7 19
%%MIDI program 8 19
... body of transcription ...

The eight voices S A T B MD1 MD2 MS1 MS2 are automatically assigned by abc2midi the
numbers 1 to 8. Then the %%MIDI program commands follow that associate each voice with
an appropriate MIDI instrument, MIDI 54 (“Choir Oohs”) or 20 (“Church Organ”).
Note the V: S line before the %%MIDI program lines. It should not be necessary, but it’s
needed as a workaround for a bug in current abc2midi. Basically, it forces the instrument
changes to occur in the first MIDI track.
Another way to assign an instrument to a voice is the following:

%%MIDI channel 1 % selects melody channel 1 (range: 1-16)

80 CHAPTER 5. PLAYING

%%MIDI program 53 % assigns 53 to current channel

The numbers that identify each instrument are listed in Appendix A.8. Note that the numbers
in the list range from 1 to 128, whereas abc2midi numbers them 0 to 127. If no MIDI program
is specified, voices will be assigned by default the General MIDI instrument 1.

5.1.7 Accompaniment Chords

The accompaniment chords described in Section 2.2.6 are used by abc2midi to generate an
accompaniment to the main melody. A lower case letter a . . . g can be used as note name;
abc2midi will play the fundamental note instead of the chord.
If the optional note is present, as in C/B or C/E, two cases are possible. If the note does not
belong to the chord as in the first example, it will be added below the fundamental note of the
chord. If it does belong as in the second example, chord inversion will be applied and the note
will become the lowest in the chord.
The types of chords currently recognised are:

m 7 m7 maj7 M7 6 m6 aug + aug7 dim dim7 9
m9 maj9 M9 11 dim9 sus sus9 7sus4 7sus9 5

Additional chords can be defined with %%MIDI chordname, explained in Section 5.1.10.
Accompaniment chords are rendered by abc2midi as a sequence of fbcz for each measure.
f stands for the fundamental or root of the chord, b for the fundamental and the chord played

together, c for the chord itself, and z for a rest. A fbcz sequence is designed to match a time
signature: for example, in 4/4 time the accompaniment is fzczfzcz: fundamental, rest, chord,
rest, fundamental, rest, chord, rest.
abc2midi associates specific fbcz sequences to the more common time signatures: fzczcz
for 3/4 time, fzcfzc for 6/8, fzcfzcfzc for 9/8, and fzcfzcfzcfzc for 12/8.
In practice, the following piece:

X: 1
M: 4/4
L: 1/4
K: C
%
"C"CDEF|"G"GABc|"C"C2"G"E2|"C"Czz2|

will sound as if it were written like this:

4
4

4
4

5.1. MIDI CONVERSION 81

Beware: the fbcz sequence does not correspond to the beats in a measure, and the length of
the elements does not depend on the value of the L: field. Sequences are adapted to match one
measure; thus, fcz, d2c2z2 and f4c4z4 have equivalent meaning.
If you don’t hear accompaniment chords, your tune might have a time signature for which a
predefined fcz sequence is missing: for example, 3/8, 5/4 or 7/8. The sequence can be easily
added, though. For example, a sequence for 7/8 is fzbczcz.
The fcz sequence can be modified when desired with the %%MIDI gchord command. Here is
the above tune with a simpler accompaniment:

X: 1
M: 4/4
L: 1/4
K: C
%%MIDI gchord c4c4
%
"C"CDEF|"G"GABc|"C"C2"G"E2|"C"Czz2|

Here we changed the sequence to c4c4 to obtain two chords in every measure.
To modify the instrument associated with the chord, the %%MIDI chordprog command is used;
for the fundamental, %%MIDI bassprog. To specify the volume, use %%MIDI chordvol for the
chord and %%MIDI bassvol for the fundamental (from 0 to 127). Finally, to disable temporar-
ily accompaniment chords use %%MIDI gchordoff, and %%MIDI gchordon to turn chords
back on.
Note that chords will continue to be played even when the melody stops. The following tune
has no melody, but only accompaniment chords:

X: 1
T: La Folia
M: 3/4
L: 1/4
Q: 1/4=80
K: Dm
%%MIDI gchord c2c2zc
%%MIDI chordprog 24 % guitar
"Dm"z3|"A"z3|"Dm"z3|"C"z3|"F"z3|"C"z3|"Dm"z3|\
%%MIDI gchord c3
"A"z3|
%%MIDI gchord czc
"Dm"z3|"A"z3|"Dm"z3|"C"z3|"F"z3|"C"z3|"A"z3|\
%%MIDI gchord c3
"Dm"z3|]

Listen to the accompanying file folia.mp3.
Let us now look at a piece that has 4/4 time but a very different rhythm: “The Girl from
Ipanema”, a famous Brazilian song written by Antônio Carlos Jobim:

82 CHAPTER 5. PLAYING

X: 1
T: Garôta De Ipanema
T: (The Girl From Ipanema)
C: Antônio Carlos Jobim
M: 4/4
L: 1/8
K: F
P:A
|:"Fmaj7" !p!G2 GE E2 ED|G2 GE EE DG-|"G7"G2 GE EE DG-|
G2 GE EE DF-|"Gm7"F2 FD DD CE-|"Gb7"E2 EC CC B,C-|
[1"Fmaj7"C8|"Gb7"z8 :|[2"Fmaj7"C8 |z8||
P:B
"Gb7"F8-|(3F2_G2F2 (3:2:3_E2F2E2|"B7"_D3 _E-E4-|_E6 z ˆG-|
"F#m7"ˆG8-|(3ˆG2A2G2 (3ˆF2G2F2|"D7"E3 ˆF-F4-|ˆF6 z A-|
"Gm7"A8-|(3A2B2A2 (3:2:3G2A2G2|"Eb7"F3 G-G4-|G4 (3z2A2B2|
"Am7"(3c2C2D2 (3E2F2G2|"D7"ˆG3 A3 z2|"Gm7" (3B2B,2C2
(3D2E2F2|"C7" ˆF3 G3 z2 ||
P:C
"Fmaj7"G3 E EE DG-|G2 GE- EE DG-|"G7"G2 GE EE DG-|G2 GE EE DA-|
"Gm7"A2 AF FF Dc-|"Gb7" c2 cE (3E2E2D2|"Fmaj7" E8-|E2 z6|
P:D
z8|]

When converted to MIDI, it sounds pathetic. . . a bossa nova has a completely different rhythm.
We need to specify another fcz sequence that corresponds to a bossa nova. Let us insert these
lines after the P:A field:

%%MIDI program 67 % Baritone Sax
%%MIDI gchord fzcffczc % bossa nova (approximate)
%%MIDI chordvol 30
%%MIDI bassvol 30
%%MIDI chordprog 25 % Steel String Guitar
%%MIDI bassprog 25

and this one immediately following the P:D field:

%%MIDI gchord c2

Reconverting to MIDI we now have a bossa nova worth its salt: garota.mp3.

5.1.8 Customising Beats

MIDI files usually sound artificial and expressionless, but there are several ways to improve
them. The command %%MIDI beatstring 〈fmp〉 provides a way of specifying where the
strong, medium and weak stresses are placed within a bar.

5.1. MIDI CONVERSION 83

f indicates a strong beat, m a medium beat, and p a soft beat. For example, let’s consider
an Irish jig, which has a 6/8 time. The corresponding fmp sequence would be fppmpp.
To fine-grain the volume of the single notes in a measure, the %%MIDI beat 〈vol1〉 〈vol2〉
〈vol3〉 〈pos〉 command can be used. vol1, vol2, and vol3 specify the volume of notes that
fall on a strong, medium, and weak beat, while pos indicates the position of strong beats in the
measure. abc2midi provides default values for all volume specifiers such as !p! or !ff!.
The following example is an Irish jig:

X:1
T:The Swallowtail Jig
R:Jig
M:6/8
L:1/8
Q:180
K:D
%%MIDI program 1 22
E/F/|
% flattish
%%MIDI beat 105 95 80 1
"Em"GEE BEE |GEG BAG |"D"FDD ADD |dcd "Bm"AGF|
"Em"GEE BEE |GEG B2c |"D"dcd "Bm"AGF|"Em"GEE E2 E/F/|
% more swing
%%MIDI beat 105 90 60 3
"Em"GEE BEE |GEG BAG |"D"FDD ADD |dcd "Bm"AGF|
"Em"GEE BEE |GEG B2c |"D"dcd "Bm"AGF|"Em"GEE E2 B|
%%MIDI beat 105 95 80 1
"Em"Bcd e2 f|e2 f edB|Bcd e2 f |edB "D"d2 c|
"Em"Bcd e2 f|e2 f edB|"D"dcd "Bm"AGF|"Em"GEE E2B|
%%MIDI beat 105 90 60 3
"Em"Bcd e2 f|e2 f edB|Bcd e2 f |edB "D"d2 c|
"Em"Bcd e2 f|e2 f edB|"D"dcd "Bm"AGF|"Em"GEE E2z|]

that converts into this MIDI file: swallowtail.mp3. Note how the different parts have less or
more swing.
To remove temporarily the emphasis programmed with %%MIDI beat, use the command %%MI-
DI nobeataccents. To resume it, use %%MIDI beataccents.

5.1.9 Arpeggios

In addition to fcz sequences, you can also specify ghijz sequences that allow you to play
the individual notes comprising the guitar chord. This allows you to play broken chords or
arpeggios.
The new codes ghijGHIJ reference the individual notes, starting from the lowest note of the
chord. For example, for the C major chord, g refers to C, h refers to E and i refers to G.
Upper case letters refer to the same notes one octave lower, z to a rest.
The following example plays the C major chord as an arpeggio of CEGE:

84 CHAPTER 5. PLAYING

%%MIDI gchord ghih

Furthermore, you can use fcz and ghij sequences together, like fcbghijGHIJz.

5.1.10 New Accompaniment Chords

The %%MIDI chordname command allows you to change the notes of an accompaniment
chord, or define new chords. The syntax is:

%%MIDI chordname 〈chord name〉 〈n1〉 〈n2〉 〈n3〉 〈n4〉 〈n5〉 〈n6〉

where “chord name”’ is a name such as those given in Section 5.1.7, 〈n1〉 is the chord funda-
mental and and the other notes (up to 6) are expressed as semitones above the fundamental.
These lines define the chords “4” and “5+”:

%%MIDI chordname 4 0 5 7 12 % e.g. C F G c
%%MIDI chordname 5+ 0 4 8 12 % e.g. C E ˆG c

Now we can apply these new chords to any note: “C4”, “G5+” and so forth.

5.1.11 Broken Rhythm

A typical rhythm of traditional Irish music is the hornpipe, which consists of series of dotted
notes (broken rhythm):

X: 1
T: Broken rhythm
M: 2/4
L: 1/8
K: C
C>D E>F | G>A B>c | c>d e>f | g>a b>c' |
c'>b a>g | f>e d>c | c>B A>G | F>E D>C |

Writing a piece this way can be tedious. There is a shortcut though: adding the R:hornpipe
field will instruct abc2midi to set the broken rhythm automatically. This effect will only work
if the note length is set to 1/8.
Let us rewrite the scale:

X: 1
T: Broken rhythm
R: hornpipe
M: 2/4
L: 1/8
K: C
CD EF | GA Bc | cd ef | ga bc' |
c'b ag | fe dc | cB AG | FE DC |

This is the resulting MIDI file is: broken.mp3.

5.1. MIDI CONVERSION 85

b Note
Note that abc2midi plays the notes in a different way than they are notated. For instance,
A>B should be played as A3/2 B/2 but is actually played as A4/3 B2/3. That is, instead of a
ratio 3:1 abc2midi employs a ratio 2:1. The rationale (pun unintended) is that 2:1 is the way
hornpipes are approximately played.
This behaviour can be reversed to normal with the %%MIDI ratio 3 1.

5.1.12 Drum Patterns

In addition to accompaniment chords, we can add a percussion accompaniment to our music
with %%MIDI drum command, which has a syntax somewhat similar to %%MIDI gchord.
The %%MIDI drum command is followed by a sequence of dz, where d represents a percus-
sion beat and z , predictably, a rest. After the sequence, you write the codes for the desired
percussion instruments (see Appendix A.8.2) and their volumes expressed as numbers from 0
to 127.
A drum accompaniment is turned on with %%MIDI drumon and turned off with %%MIDI drum-
off. The following tune has a bass drum and hi-hat accompaniment:

X: 1
M: 4/4
L: 1/4
K: C
% sequence instrument volume
%%MIDI drum dddd 36 46 36 46 80 100 80 100
% bass drum 1, open hi-hat
%%MIDI drumon
CDEF|GABc| %%MIDI drumoff
cdef| %%MIDI drumon
gabc'|

You cannot specify a fractional length: to indicate a rhythm such as (3ddd d/d/d/d/ you
need to use the sequence d4d4d4d3d3d3d3.
Here is a fun and more complex example (riff.mp3):

X: 1
M: 4/4
T: Riff
%%MIDI program 1 25 % Steel String Guitar
Q: 1/4=160
K: C
%%MIDI drum dzddd2dz 35 39 39 35 39 127 80 80 127 80
% Bass Drum 1 + Electric Snare
%%MIDI gchord cccccccc
%%MIDI drumon
"C"CC EE GG AA|_BB AA GG EE|
CC EE GG AA|_BB AA GG EE|

86 CHAPTER 5. PLAYING

"F"FF AA cc dd|"F7"_ee dd cc AA|
"C"CC EE GG AA|_BB AA GG EE|
%%MIDI gchordoff % no chords
"G"GG BB dd Bd|"F7"FF AA cc Ac|
%%MIDI gchordon % turn chords back on
"C"CC EE GG AA|_BB AA GG EE|
%%MIDI gchord c8
%%MIDI program 1 60 % Brass Section
%%MIDI drumoff
!fermata!"C"[C8E8G8c8]|

5.1.13 Percussion Instruments

MIDI files have different channels, which can hold several tracks. Normally, you don’t bother
with these details; all you need to know is that, by default, different voices correspond to
different tracks on the same channel.
In normal MIDI channels, all notes belong to the associated instrument. However, the special
MIDI channel 10 has a peculiar feature: each note is associated with a different percussion
instrument. Considering the instrument list in Appendix A.8.2, the following tune will have a
melody played by piano, and low-tom, hi-hat and triangle accompaniment (accomp.mp3):

X: 1
L: 1/4
Q: 1/4 = 120
V: 1 name="Piano"
V: 2 clef=perc name="Low Tom"
V: 3 clef=perc name="Open Hi Hat"
V: 4 clef=perc name="Open Triangle"
K: C
%
[V: 1] CDEF |GABc | % Piano
[V: 2] %%MIDI channel 10
A,,zA,,z |A,,zA,,z | % Low Tom
[V: 3] %%MIDI channel 10
zˆA,,zˆA,, |zˆA,,zˆA,, | % Open Hi Hat
[V: 4] %%MIDI channel 10
a/a//a//a/a/a/a/a/a/|a/a//a//a/a/a/a/a/a/| % Open Triangle

Note that the %%MIDI channel 10 command must be written after the V: field that starts a
new voice.
Unfortunately, if we typeset this piece we will not get what we would expect: Low Tom and
Open Hi-Hat will be rendered as very low notes. In fact, abcm2ps has limited support for
percussions. Future releases may provide full support for percussions instruments.

5.1. MIDI CONVERSION 87

5.1.14 Portamento

A glide effect can be added using the %%MIDI portamento [bass] [chord] 〈n〉 com-
mand, where 〈n〉 is a number between 0 (no effect) and 63 (maximum effect).
The following is the riff from Impressioni di Settembre, a great song by Italian progressive
rock band Premiata Forneria Marconi. The first repeat has no glide effect, while the second
repeat mimics the original Moog glide (impressioni.mp3):

X: 1
T: Impressioni di Settembre (riff)
C: Premiata Forneria Marconi, 1972
M: 4/4
L: 1/8
Q: 1/4=140
K: Dm octave=-1
%
%%MIDI program 1 81
%%MIDI chordprog 80
%%MIDI gchord b4
%%MIDI chordvol 50
%
%%MIDI portamento 0
|:"Dm"D4-DE F2|G A2 c d2 f e-|"C"e d c2 g4-|gfed- dcg2|
"G"f e2 d2 c =B2-|=B A G3 BG A-|"Dm"A d- d6-|d8
%%MIDI portamento 60
:|
D8-|D8|]

%%MIDI noportamento turns off the effect.

5.1.15 Drone

Bagpipe, medieval and other kinds of music are often accompanied by one or more drone
notes. abc2midi supports drones using these commands:

• %%MIDI drone 〈instrument〉 〈pitch1〉 〈pitch2〉 〈vel1〉 〈vel2〉 specifies
the drone characteristics;

• %%MIDI droneon starts the drone accompaniment;

• %%MIDI droneff stops the drone.

The parameters of the %%MIDI drone command are 〈instrument〉, that specifies the MIDI in-
strument for the drone; 〈pitch1〉 and 〈pitch2〉 are the MIDI pitches of the drone notes; 〈vel1〉
and 〈vel2〉 are the MIDI “velocities”, that is the volume, of the drone notes.
The pitches are not specified as ABC notes, but as standard MIDI pitches. In short, these are
numeric codes (1–127) that correspond to notes, as shown in Table 5.1. To obtain notes higher
or lower than the octave shown in the table, simply add or subtract 12 to the note.

88 CHAPTER 5. PLAYING

Note A,, ˆA,, B,, C, ˆC, D, ˆD, E, F, ˆF, G ˆG, A,
MIDI pitch 45 46 47 48 49 50 51 52 53 54 55 56 57

Table 5.1: Standard notes and corresponding MIDI pitches.

The default values of %%MIDI drone are 71 (bassoon), 45 (A,,), 33 (A,,,), 80 and 80.
Let’s put it into practice. This is Amazing Grace, written in G major with bagpipe drone ac-
companiment:

X:1
T:Amazing Grace
M:3/4
L:1/8
Q:40
K:G
%%MIDI gracedivider 16
%%MIDI program 109
%%MIDI drone 109 43 31 70 70
%%MIDI droneon
|z3 z2D|/AG2 B/G/ B2 A|/AG2 FE D2 D|
/AG2 /CB/G/ /CB2 A/B/|d3-d2 B|
d2 B/G/ B2 A|G2 E /ED2 D|
/AG2 B/G/ B2 A|/AG3-G2 |]
%%MIDI droneoff

The resulting MIDI file is amazinggrace.mp3.

5.1.16 midi2abc

This program converts a MIDI file to the corresponding ABC source. It does the job with good
approximation, but the source should be edited to add voice layout and formatting parameters.
The command line is simply:

midi2abc file.mid -o file.abc

midi2abc has many command-line parameters, which we will not examine for now. By de-
fault, the resulting ABC file will contain only one measure per line.
The best way to get an ABC source from a MIDI file is using runabc.tcl as shown in Fig-
ure 5.1. Select extras/midi2abc, then fill the appropriate fields. The voice interleave radio
button will write different voices interleaved, instead of one after another.
Press the button midi2abc to create the ABC source.
Don’t expect to obtain perfect sources all the time! In fact, while sheet music (be it written in
ABC or in any other format) can always be translated into MIDI, the opposite does not always
hold true. Remember what I explained in Section 5.1. For example, you will see that trills are
translated as sequences of short notes; repeats will just duplicate measures; and many other
problems. Sometimes, note length will look crazy.

5.1. MIDI CONVERSION 89

Figure 5.1: Converting a MIDI file to ABC with runabc.tcl.

Bearing in mind that some of these limitations cannot be avoided, further development is being
planned to improve the output of midi2abc.

5.1.17 Global Settings

In a tune collection (i.e. a file containing several tunes), the same MIDI settings could be shared
by all or most tunes. Instead on inserting the same %%MIDI lines in each tune, it’s possible to
place them at the beginning of the file; the parameters will apply to all tunes.
These parameters can be

• %%MIDI C

• %%MIDI nobarlines

• %%MIDI barlines

• %%MIDI fermatafixed

• %%MIDI fermataproportional

• %%MIDI ratio

• %%MIDI chordname

• %%MIDI deltaloudness

Obviously, these parameters may be overridden by %%MIDI lines within each tune.

90 CHAPTER 5. PLAYING

5.2 Differences and Incompatibilities

Unfortunately, abcm2ps and abc2midi are not completely compatible with each other, because
the first program accepts a more extended syntax than the second. Moreover, it should be
pointed out that some indications only make sense in a printed score. Consequently, when
writing music in ABC bear in mind that:

• tremolo decorations don’t produce audible effect;

• if a system change occurs in the middle of a piece, abc2midi gets lost and generates an
incorrect MIDI file;

• in U: fields, abc2midi only accepts uppercase H . . . Z ;

• . . . there may be others.

Because of these small incompatibilities, we have the problem of writing music that can be
converted by both abcm2ps and abc2midi. In theory, we should write two source files, one for
abcm2ps and another for abc2midi: this is obviously unacceptable. An alternative is to use
the abcpp preprocessor, which is explained in the next section.

� � � � � � �

Chapter 6

Converting

6.1 The abcpp Preprocessor

A preprocessor is a program that modifies a text file, according to commands contained in
the file. abcpp is a preprocessor expressly designed for ABC files. It allows to

• exclude or include parts of a piece according to specified conditions;

• define macros, i.e. symbols and sequences of customised commands;

• rename commands, symbols, and notes;

• include parts of other files.

Needless to say, abcpp is a command-line program. You run it specifying the names of input
and output files, and possibly defining symbols.

6.1.1 Basic Usage

Let us look at an example. We will write a portable ABC file, which can be read correctly by
abcm2ps and abc2midi. Save this source as test.abp:

X: 1
T: Test with abcpp
#ifdef ABCMIDI
T: (version for abc2midi)
Q: 1/4 = 120
#else
T: (version for abcm2ps)
Q: "Allegro" 1/4 = 120
#endif
K: C
cdef gabc'|c'bag fedc|

91

92 CHAPTER 6. CONVERTING

Note the lines that start in # : these are directives (commands) to the preprocessor.
The first directive means: “if the symbol ABCMIDI is defined, then. . . ” If the condition is true,
the source continues with the next two lines; otherwise, with the lines that follow the #else
directive. The #endif directive terminates the condition.
To convert the source to make it acceptable to abc2midi, we’ll run abcpp with this command
line:

abcpp -ABCMIDI test.abp test-midi.abc

This way we define the ABCMIDI symbol, and a new ABC file will be created:

X: 1
T: Test with abcpp
T: (version for abc2midi)
Q: 1/4 = 120
K: C
cdef gabc'|c'bag fedc|

If we run abcpp without defining any symbols, we’ll get the right source for abcm2ps:

abcpp test.abp test-ps.abc

X: 1
T: Test with abcpp
T: (version for abcm2ps)
Q: "Allegro" 1/4 = 120
K: C
cdef gabc'|c'bag fedc|

Let us consider another example. Some ABC applications don’t support invisible rests. To
make it possible to use them portably, we have to insert these lines in the source:

#ifdef OLD
#define !x! z
#else
#define !x! x
#endif

In plain English: “if the OLD symbol is defined, then turn the !x! decoration into z ; otherwise,
!x! will become x ”. As you write the tune, you will use !x! to denote invisible rests. When
you convert the source for abcm2ps or other programs, the !x! symbol will be turned into x
or z according to the presence of the symbol OLD.

6.1. THE ABCPP PREPROCESSOR 93

6.1.2 Advanced Usage

We have seen in Figure 3.1 an example of ABC file in which the system changes. Unfortu-
nately, abc2midi doesn’t correctly handle this source, because the number of voices is vari-
able.
Let us see how we can use abcpp to obtain a version compatible with abc2midi. The idea
is to write all the voices, even those that contain only rests, then provide specific instructions
for abcm2ps and abc2midi. We will obtain a source where only voice 3 of parts A and C is
printed, while the second will contain all voices.

X: 1
T: Riu, riu, chiu, \241la guarda ribera!
C: Villancico (Spagna, sec. XVI)
M: C|
L: 1/2
Q: 1/2 = 240
#ifdef MIDI
P: ABCB
#endif
%%staves 3
V: 3 clef=treble-8 name="Tenor\nBass"
K: Am
% ONLY THE MEN
#ifdef MIDI
P: A
[V: 1] [M:none] z4 |z4z4 |z6 |
[V: 2] [M:none] z4 |z4z4 |z6 |
[V: 4] [K: Am octave=-1]\
[M:none] aaga |f2ed2efg|a2a2z2|
#endif
[V: 3] [M:none] AAGA |F2ED2EFG|A2A2z2|
w: Ri-u, ri-u, chi-u, \241la guar-da ri-be-ra!
%
#ifdef MIDI
[V: 1] z4 |z4z4 |z6 |
[V: 2] z4 |z4z4 |z6 |
[V: 4] aaga |f2eg2gef|d2d2z2|
#endif
[V: 3] AAGA |F2EG2GEF|D2D2z2|
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra,
%
#ifdef MIDI
[V: 1] z4 |z4z4 |z4 |
[V: 2] z4 |z4z4 |z4 |
[V: 4] aaga |f2eg2gef|d2d2|
#endif
[V: 3] AAGA |F2EG2GEF|D2D2|
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra.
% WOMEN AND MEN
#ifndef MIDI
%%staves [1 2 3 4]
V: 1 clef=treble name="S" sname="S"
V: 2 clef=treble name="A" sname="A"
V: 3 clef=treble-8 name="T" sname="T"
V: 4 clef=bass name="B" sname="B"

94 CHAPTER 6. CONVERTING

#else
P: B
#endif
[V: 1]AAGA|F2ED2EFG |A2A2z2|
w: Ri-u, ri-u, chi-u, la guar-da ri-be-ra!
[V: 2]FFEC|D2EF2EDD |C2C2z2|
[V: 3]cccG|A2AA2ADD |E2E2z2|
w: Ri-u, ri-u, chi-u, la guar-da ri-be-ra!
[V: 4]ffcf|d2Ad2c_BB|A2A2z2|
%
[V: 1] z4 |AAGA|F2EF2FEE|D2D2z2|
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra,
[V: 2] z2EE |DCEC|D2CD2DCC|D2D2z2|
w: Diós guar-dó el lob', el lo-bo de nue-stra cor-de-ra,
[V: 3] ccBc |A2BA|A2AA2AAA|A2A2z2|
w: Diós guar-dó el lo-bo, el lo-bo de nue-stra cor-de-ra,
[V: 4] aaga |f2ef|d2Ad2dAA|d2d2z2|
%
[V: 1] z4 |AAGA|F2ED2DCC |D2D2z2 |
w: Diós guar-dó el lo-bo de nue-stra cor-de-ra.
[V: 2] z2EE|DCEC|D2CA,2A,A,A,|A,2A,2z2|
w: Diós guar-dó el lob', el lo-bo de nue-stra cor-de-ra.
[V: 3] ccBc|A2BA|A2AF2FEE |D2D2z2 |
w: Diós guar-dó el lo-bo, el lo-bo de nue-stra cor-de-ra.
[V: 4] aaga|f2ef|d2Ad2dAA |d2d2z2 |
% ONLY THE MEN
#ifdef MIDI
P: C
[V: 1] z4 |z8 |z4|z4 |
[V: 2] z4 |z8 |z4|z4 |
[V: 4] aaga|f2eg2gef|d4|aaga|
#else
%%staves 3
#endif
[V: 3] AAGA|F2EG2GEF|D4|AAGA|
w: El lo-bo ra-bio-so la qui-so mor-der, mas Diós po-de-
%
#ifdef MIDI
[V: 1] z8 |z4|z4 |z8 |
[V: 2] z8 |z4|z4 |z8 |
[V: 4] f2feggef|d4|aaga|f2fedefg|
#endif
[V: 3] F2FEGGEF|D4|AAGA|F2FEDEFG|
w: ro-so la su-po de-fen-der; qui so-le ha-ce que no pu-die-sce pe-
%
#ifdef MIDI
[V: 1] z4|z4 |z8 |z4 |
[V: 2] z4|z4 |z8 |z4 |
[V: 4] a4|aaga|f2feggef|d2d2|
#endif
[V: 3] A4|AAGA|F2FEGGEF|D2D2|
w: car: ni˜aun o-ri-gi-nal e-sta Vir-gen no tu-vie-ra.

6.2. USING THE ABCM2PS COMMAND 95

6.2 Using the abcm2ps Command

TO BE WRITTEN

6.3 abc2abc

IT is part of the abcMIDI package. This command-line program is used to modify the ABC

source in several ways. abc2abc is followed by the name of the file to modify, and then by
one of these options:

-n 〈x〉 reformats the source with 〈x〉 measures per line.

-t 〈n〉 transposes the music by 〈n〉 semitones. 〈n〉 may be a negative number.

-d doubles the note lengths.

-v halves the note lengths.

-V 〈x〉 outputs only voice 〈x〉 of a polyphonic file.1

-X 〈n〉 for a file with several pieces, renumbers the X: field starting with 〈n〉.

As usual, here is an example. Let us modify this scale:

X: 1
L: 1/4
K: C
CDEF|GABc|cdef|gabc'|c'cCz|

starting abc2abc with this command line:

$ abc2abc cde.abc -n 2 -t 2

that is, we are reformatting the source to get two measures per line and transposing by two
semitones up. This is what we obtain:

X:1
L:1/4
K:Eb
%
EFGA|Bcde|
efga|bc'd'e'|
e'eEz|

The transposing feature will be extremely useful to players of clarinet and other transposing
instruments.

� � � � � � �

1The program abc2prt (Section 7.4) works better.

96 CHAPTER 6. CONVERTING

Chapter 7

Other Possibilities

7.1 Inserting Music in Other Programs

SHEET music in PostScript format can be easily converted to other formats suitable for word
processing, web pages, etc. In practice, there are only two recommended formats: JPG and

PNG. The latter is the best.
To convert PostScript to PNG, Windows users can simply use GSview. Select File/Convert,
choose png16 in the Device field, then select the pages you wish to convert.
Resolution is a very important parameter. The higher the resolution, the better the quality of
the output; but the file size also grows exponentially. A resolution of 300 dots per inch is fine.
Unix users could use the low-level Ghostscript interpreter. The following script converts an
input file to PNG:

#!/bin/sh
FILE=$(basename $1 .ps)
gs -dNOPAUSE -q -dBATCH -sPAPERSIZE=a4 \
-sDEVICE=pnggray \
-dTextAlphaBits=4 -dGraphicsAlphaBits=4 \
-r300x300 \
-sOutputFile=$FILE-%003d.png \
$1

A similar method is using convert, a command provided by the ImageMagick package (http:
//www.imagemagick.org/). You use it as in this example:

convert -density 300x300 file.ps file.png

The -density parameter specifies the resolution.

7.2 Inserting Music in LATEX

This guide is written in LATEX, which you may want to use instead of a word processor. To
insert ABC music in LATEX documents, you have to decide whether your final format will be
PostScript or PDF.

97

http://www.imagemagick.org/
http://www.imagemagick.org/

98 CHAPTER 7. OTHER POSSIBILITIES

In both cases, you will have to convert the score to EPS (encapsulated PostScript). This is
done either by specifying the -E switch in the abcm2ps command line, or using the command
ps2epsi. This one is part of Ghostscript. When you are done, you will include the graphicx
package in your document and include the music as in this example:

\documentclass[a4paper,12pt]{article}
\usepackage{graphicx}
\begin{document}
This is some ABC music:

\medskip
\includegraphics[width=\linewidth]{music.eps}
\end{document}

If you wish to use pdflatex, you will have to convert the score from EPS to PDF using
epstopdf, then insert the PDF file in the LATEX source.

7.2.1 Using abc.sty

Prof. Enrico Gregorio of University of Verona, Italy, has written a package that enables the
inclusion of ABC code in LATEX documents. The relevant archive, called abc.zip, can be
freely obtained from CTAN mirrors. Please see Section A.1 for details.
Once installed, the file abc.sty provides the following facilities:

• the abc environment

• the \abcinput command

• the \abcwidth parameter.

More explanations are included in the package documentation. This is a sample LATEX docu-
ment that employs abc.sty:

\documentclass[a4paper,12pt]{article}
\usepackage[generate,ps2eps]{abc}
\usepackage{mathptmx}

\begin{document}

\title{Example of ABC in \LaTeX{}}
\author{Guido Gonzato}
\date{}
\maketitle

This is a short piece.

\medskip

7.3. CONVERTING GRAPHICS TO EPS 99

\begin{abc}
X:4
T:Cronin's Hornpipe
R:hornpipe
S:Keenan and Glackin
E:7
M:C|
L:1/8
K:G
BA|GABc dBde|gage dega|bage dBGB|cABG A2BA|
GABc dBde|gage dega|bage dBAB|G2G2 G2:|
fg|afdˆc d2ga|bged e2ga|(3bag (3agf gedB|(3cBA AG AcBA|
GABc dBde|˜g3e dega|bage dBAB|G2G2 G2:|
\end{abc}

\medskip

Let's now include a tune we have in the current directory as
\file{tune.abc}:

\medskip

\abcinput{tune}

\end{document}

7.3 Converting Graphics to EPS

Very often, graphic files are in JPG, GIF or PNG format. Converting such files into EPS files
suitable for inclusion with the %%EPS command is best done with yet another command-line
program, bmeps. It is available from http://www.ctan.org/tex-archive/support/bmeps; I suggest
that Windows users download the provided static binary.
bmeps is used as in this example:

$ bmeps -c myfile.png myfile.eps

If you omit -c, the resulting EPS file will be in black and white.

7.4 Parts Extraction

Another useful tool is abc2prt, which extract voices from polyphonic sources. You use abc-
2prt to create new ABC files containing the single voices.
For example, let us suppose we want to extract the tenor part (voice 3) from the Ave Verum
listed in Section 4.1. All you have to do is run abc2prt this way:

http://www.ctan.org/tex-archive/support/bmeps

100 CHAPTER 7. OTHER POSSIBILITIES

abc2prt -3 aveverum.abc aveverum-3.abc

A new ABC file called aveverum-3.abc, containing only voice 3, will be created.
Needless to say, abc2prt is integrated in JEDABC.

7.5 Limitations of abcm2ps

Although it is a very powerful program, abcm2ps currently has a few limitations to be aware
of:

• no manual control over symbol positioning;

• some formatting parameters cannot change within the same tune;

• doesn’t support special notations like percussions or Gregorian Chant;

• . . .

This list was longer some versions ago. . . Most likely, the missing features will be imple-
mented in future releases.

7.6 Final Comments

I started with ABC several years ago, and it’s always been my tool of choice whenever I needed
to print or listen to a piece of music. This manual started out as a list of notes I wrote for myself,
and it slowly grew to its present form. Since the ABC software is free, I decided it was only
fair to release this manual for free as well.
A big “thank you!” to the author of abcm2ps, Jean-François Moine, for writing such a beautiful
and useful program; to Michael Methfessel for writing the original abc2ps; to James Allwright
for writing the original abcMIDI, and to Seymour Schlien for maintaining and improving it; to
Chris Walshaw for creating ABC; to Norman Schmidt who helped me translating parts of this
manual into English.
Thanks to my friend Sandro Pasqualetto and to Gianni Cunich for their suggestions on how to
improve this guide. Last but not least, thanks to all people who contribute to ABC!

7.6.1 Please, Make a Donation. . .

I say again, this manual is free. That said, if the results of my work on ABC are useful to you,
it would be a good thing if you made a donation. I used to ask for a little amount of money,
which I don’t need anymore now that the mortgage’s over. So: please make a donation to a
charity of your choice, and let me know. You will gain some good karma.
May I ask that you send me a postcard, too? I’m especially fond of natural landscapes. Moun-
tain views or geology images will make my day.
This is my home address: Guido Gonzato, Via Monte Ortigara 2/a, 37126 Verona, Italy.
Thank you so much!

7.6. FINAL COMMENTS 101

7.6.2 In Loving Memory of Annarosa Del Piero, 1930–2000

I had the privilege to be a friend of Annarosa’s, without whom I would be a different person.
No rhetoric, Annarosa was unique. She profoundly loved and enjoyed art and music. She
shared her love with me when I was just a kid, giving me records of opera arias as presents.
She took me by train to visit Venice for the first time in my life, and she introduced me to the
beauty of the mountains.
She confronted her fatal illness with courage and dignity. Till the end she listened to her
favourite music, till the end she gave me beautiful records of operas as present. This guide
is dedicated to her memory: a tiny leaf born from the seed she throwed when she had a six-
year-old kid listen to Rigoletto, so many years ago. Ciao, Annarosa.

� � � � � � �

102 CHAPTER 7. OTHER POSSIBILITIES

Appendix A

Bits & Pieces

A.1 Web Links

The ABC 2 home page:
http://abcplus.sourceforge.net
The original ABC page:
http://www.abcnotation.com
The ABC Project page:
http://abc.sourceforge.net/
The abcm2ps home page:
http://moinejf.free.fr
The abc2midi home page and user guide:
http://ifdo.pugmarks.com/∼seymour/runabc/top.html
http://ifdo.pugmarks.com/∼seymour/runabc/abcguide/abc2midi guide.html
Hudson Lacerda’s ABC page, including advanced customisation and PostScript new routines:
http://hudsonlacerda.webs.com/
The Mandolintab web-based ABC converter:
http://mandolintab.net/abcconverter.php
Abctab2ps is an almost complete implementation of ABC 2 that supports tablatures for lute:
http://www.lautengesellschaft.de/cdmm/
The Philip’s Music Writer home page is about a powerful and easy-to-use textual music nota-
tion format, which could be a valuable alternative to ABC:
http://www.quercite.com/pmw.html
Lilypond is another high-quality music notation format, very powerful but rather complex:
http://lilypond.org/web/
The abc package for LATEX:
http://www.ctan.org/tex-archive/macros/latex/contrib/abc/
Finally, the MusiXTEX home page. This is a TEX-based, very complex notation that spurred
the creation of two spinoffs, PMX and M-Tx:

103

http://abcplus.sourceforge.net
http://www.abcnotation.com
http://abc.sourceforge.net/
http://moinejf.free.fr
http://ifdo.pugmarks.com/~seymour/runabc/top.html
http://ifdo.pugmarks.com/~seymour/runabc/abcguide/abc2midi_guide.html
http://hudsonlacerda.webs.com/
http://mandolintab.net/abcconverter.php
http://www.lautengesellschaft.de/cdmm/
http://www.quercite.com/pmw.html
http://lilypond.org/web/
http://www.ctan.org/tex-archive/macros/latex/contrib/abc/

104 APPENDIX A. BITS & PIECES

http://icking-music-archive.org/

A.2 ABC Fields

Field Where Notes and Example

A: header Area. A:Liverpool
B: header Book. B:Groovy Songs
C: header Composer. C:The Beatles
D: header Discography. D:The Beatles Complete Collection
d: body Decorations. d:!pp! * * !mf! * !ff!
F: header File name. F:http://www.beatles.org/help.abc
G: header Group. G:guitar
H: header History. H:This song was written...
I: header Information. I:lowered by a semitone
I: body Meta-command. I:MIDI program 2 32
K: last in header Key. K:C
L: header, body Note length. L:1/4
M: header, body Metre. M:3/4
N: header Notes. N:See also...
O: header Origin. O:English
P: header, body Part. P:Start
Q: header, body Tempo. Q:1/2=120
R: header Rhythm. R:Reel
S: header Source. S:Collected in Liverpool
s: body Decorations. s:!pp! * * !mf! * !ff!
T: second in header Title. T:Help!
U: header User defined. U:T=!trill!
V: header, body Voice. V:1
W: body Lyrics at end. W:Help! I need...
w: body inline lyrics. w:Help! I need...
X: start of header Index number. X:1
Z: header Transcription notes. Z:Transcribed by ear

A.3 Glossary

editor: a program to write “ASCII text”, that is with no special format. Windows’ Notepad
(ugh), emacs and vim are some well-known editors.

font: type of character; for instance, Times or Helvetica.

GPL: a software license that disciplines the use of many programs available from the Internet.
Briefly, a GPL’ed program can be freely used, modified and shared, without having to
pay for it. Please visit http://www.gnu.org/ for more details.

MIDI: roughly speaking, the audible equivalent of sheet music. You can listen to a MIDI file
using dedicated players.

http://icking-music-archive.org/
http://www.gnu.org/

A.4. CHARACTER SETS 105

PDF: file format invented by Adobe, very common on the Internet to distribute documenta-
tion. It is a spinoff of PostScript.

PostScript: file format invented by Adobe. Unlike graphic files like JPG, PNG or others, Post-
Script is a vector format. This means that one can magnify the image at will, without
losing in details.

system: set of staves relative to the instruments that play together in a musical piece.

string: word, set of characters.

A.4 Character Sets

One of the nicest things in the world is diversity. Different languages use different characters,
but this can lead to incompatibility problems when, say, an Italian musician wants to send his
or her American friend an ABC source.
Fortunately, there exist a character set called ISO 8859-1 (Latin1) that includes accented char-
acters used by many languages: all of central Europe, and all English-speaking countries.
These characters have an ASCII code between 160 and 255, and can be typed as sequences
\xxx when not available on the keyboard.

The Latin1 characters and the corresponding octal code are shown below. I recommend that
you use the \xxx sequence even if you do have these characters on your keyboard, because
this makes the source more portable.

ISO 8859-1 (Latin1)

 \240 ¡ \241 ¢ \242 £ \243 ¤ \244 ¥ \245 ¦ \246 § \247

¨ \250 © \251 ª \252 « \253 ¬ \254 ­ \255 ® \256 ¯ \257

° \260 ± \261 ² \262 ³ \263 ´ \264 µ \265 ¶ \266 · \267

¸ \270 ¹ \271 º \272 » \273 ¼ \274 ½ \275 ¾ \276 ¿ \277

À \300 Á \301 Â \302 Ã \303 Ä \304 Å \305 Æ \306 Ç \307

È \310 É \311 Ê \312 Ë \313 Ì \314 Í \315 Î \316 Ï \317

Ð \320 Ñ \321 Ò \322 Ó \323 Ô \324 Õ \325 Ö \326 × \327

Ø \330 Ù \331 Ú \332 Û \333 Ü \334 Ý \335 Þ \336 ß \337

à \340 á \341 â \342 ã \343 ä \344 å \345 æ \346 ç \347

è \350 é \351 ê \352 ë \353 ì \354 í \355 î \356 ï \357

ð \360 ñ \361 ò \362 ó \363 ô \364 õ \365 ö \366 ÷ \367

ø \370 ù \371 ú \372 û \373 ü \374 ý \375 þ \376 ÿ \377

A.5 Formatting Commands

Command parameters will be specified as follows:

106 APPENDIX A. BITS & PIECES

Parameter Type

length unit length indicated in cm, in or pt
text generic text
char character
logical logical value, yes or no, or 1 or 0
int integer number
float number with decimals
str character string

A.5.1 Page Format

These commands set the page geometry.

%%botmargin 〈length〉: sets the page bottom margin to 〈length〉.

%%footer 〈text〉: sets the text to be printed as footer on each page; see Section 4.1.8 for
details.

%%header 〈text〉: sets the text to be printed as header on each page; see Section 4.1.8 for
details.

%%indent 〈length〉: sets the indentation for the first line or system to 〈length〉.

%%landscape 〈logical〉: if 1, sets the page layout as landscape.

%%leftmargin 〈length〉: sets the page left margin to 〈length〉.

%%multicol 〈command〉: defines columns. 〈command〉 may be start, new, and end. See
Section 4.1.6 for details.

%%pageheight 〈length〉: sets the page height to 〈length〉. For European A4 paper, the right
value is 29.7cm; for US Letter, 11in.

%%pagewidth 〈length〉: sets the page width to 〈length〉. For European A4 paper, the right
value is 21cm; for US Letter, 8.5in.

%%rightmargin 〈length〉: sets the page right margin to 〈length〉.

%%staffwidth 〈length〉: used as an alternative to the commands %%pageheight and %%pa-
gewidth.

%%topmargin 〈length〉: sets the page top margin to 〈length〉.

A.5.2 Text

These commands are used to write text lines within a tune and between tunes. Fonts and
spacing are set with other commands that we will examine later on.

A.5. FORMATTING COMMANDS 107

%%begintext...%%endtext : the pair %%begintext and %%endtext includes a group
of text lines. These lines will be printed. If no text follows %%, the line is a paragraph
separator. For example:

%%begintext
%%Spanish folk song, usually
%%accompanied by guitar and cymbals.
%%endtext

The command %%begintext can be given a parameter to change the text alignment:

%%begintext obeylines prints text as is;

%%begintext fill (or ragged) formats the text to the page margins;

%%begintext justify (or align) as above, but aligns to the page right margin;

%%begintext skip ignores the following lines.

%%center 〈text〉: centers the following text.

%%text 〈text〉: writes the following text. For example:

%%text Spanish folk song

%%textoption 〈int〉: sets the default text option to be used between %%begintext and
%%endtext, or in %%EPS files. The parameter can be a digit or a corresponding string: 0
or obeylines), 1 (justify), 2 (fill), 3 (center), 4 (skip), 5 (right). If the option is
4 (skip), no text or EPS is output.

A.5.3 Fonts

These commands specify the character fonts used in various parts of a score. Please note that
the common True Type fonts used by Windows are not the same fonts used by abcm2ps. In
fact, abcm2ps uses the PostScript fonts, provided for and managed by Ghostscript.
Standard fonts are shown in Appendix A.7. I remind you that indications for adding new fonts
are given in Section 4.5.4.

%%annotationfont 〈string〉: font of annotations.

%%composerfont 〈string〉: C: field font.

%%footerfont 〈string〉: font of %%footer lines.

%%font 〈string〉: declares a font for later usage.

%%gchordfont 〈string〉: guitar chords font.

%%headerfont 〈string〉: font of %%header lines.

108 APPENDIX A. BITS & PIECES

%%historyfont 〈string〉: font of H: field.

%%infofont 〈string〉: text font in I: fields.

%%measurefont 〈string〉 [box]: text font of measure numbers. If the word box is present,
a box is drawn around the measure number.

%%partsfont 〈string〉: P: fields font.

%%repeatfont 〈string〉: font of repeat numbers or text.

%%setfont-〈int〉 〈string〉 〈int〉: sets an alternate font for strings. In most strings, the cur-
rent font may be changed by $n (n = 1, 2, 3, 4). $0 resets the font to the default value.

%%subtitlefont 〈string〉: font of the second T: field.

%%tempofont 〈string〉: tempo font.

%%textfont 〈string〉: text font in %%text lines.

%%titlecaps 〈logical〉: if true, writes the title in capital letters.

%%titlefont 〈string〉: font of the first T: field.

%%titleformat 〈string〉: defines the format of the tune title. This format overrides %%ti-
tleleft, %%infoline, and %%composerspace. See Section 4.1.7 for examples.

%%titleleft 〈logical〉: if true, writes the title left-aligned instead of centered.

%%voicefont 〈string〉: font of voice names.

%%vocalfont 〈string〉: font of the text in w: lines.

%%wordsfont 〈string〉: font of the text in W: lines.

A.5.4 Spacing

These commands specify spacing between score elements.

%%barsperstaff 〈int〉: attempts to typeset the score with 〈int〉 bars on each line.

%%breaklimit 〈float〉: used together with %%maxshrink, it lets the user control where line
breaks may occur. The parameter can range between 0.5 (line break occurs when the
line is 50% full) and 1.0.

%%breakoneoln 〈logical〉: if true, treats an end of line as if it were a space (i.e. breaks note
beams).

%%composerspace 〈length〉: sets the vertical space before the composer to 〈length〉.

%%gracespace 〈float〉 〈float〉 〈float〉: defines the space before, within and after grace no-
tes.

A.5. FORMATTING COMMANDS 109

%%infospace 〈length〉: sets the vertical space before the infoline to 〈length〉.

%%linebreak 〈string〉: defines the line break separators. The string may be empty or con-
tain the values <EOL>, $, !, and <none>. The latter option (or an empty string) com-
putes line breaks automatically, as the deprecated command %%continueall.

%%lineskipfac 〈float〉: sets the factor for spacing between lines of text to 〈float〉.

%%maxshrink 〈float〉: sets how much to compress horizontally when staff breaks are cho-
sen automatically. 〈float〉 must be between 0 (don’t shrink) and 1 (full shrink).

%%maxstaffsep 〈length〉: sets the maximum vertical space between staves.

%%maxsysstaffsep 〈length〉: sets the maximum vertical space between systems.

%%musicspace 〈length〉: sets the vertical space before the first staff to 〈length〉.

%%newpage: sets a page break.

%%notespacingfactor 〈float〉: sets the proportional spacing of notes. The default value
is 1.414 (

√
2); 1 makes all notes equally spaced.

%%parskipfac 〈float〉: sets the factor for spacing between parts to 〈float〉.

%%partsspace 〈length〉: sets the vertical space before a new part to 〈length〉.

%%scale 〈float〉: sets the music scale factor to 〈float〉.

%%sep: prints a centered separator (a short line).

%%sep 〈length1〉 〈length2〉 〈length3〉: prints a separator of length 〈length3〉, with spacing
〈length1〉 above and 〈length2〉 below.

%%slurheight 〈float〉: sets the slur height factor; lesser than 1 flattens the slur, greater than
1 expands it.

%%staffbreak 〈length〉 [“f”]: sets a 〈length〉-long break (gap) in the current staff. If the
letter “f” is present, the staff break is forced even if it occurs at the beginning or end of
a line.

%%staffsep 〈length〉: sets the vertical space between different systems to 〈length〉.

%%stretchlast 〈logical〉: stretches the last staff of the tune when underfull.

%%stretchstaff 〈logical〉: stretches underfull staves across page.

%%subtitlespace 〈length〉: sets the vertical space before the subtitle to 〈length〉.

%%sysstaffsep 〈length〉: sets the vertical space between staves in the same system to
〈length〉.

%%textspace 〈length〉: sets the vertical space before texts to 〈length〉.

%%titlespace 〈length〉: sets the vertical space before the title to 〈length〉.

110 APPENDIX A. BITS & PIECES

%%topspace 〈length〉: sets the vertical space at the top of a tune to 〈length〉. Note that a
tune may begin with %%text commands before the title.

%%vocalspace 〈length〉: sets the vertical space before the lyrics under staves to 〈length〉.

%%voicescale 〈length〉: sets the scale of a voice, or of all voices if present in the header.

%%vskip 〈h〉: adds 〈h〉 vertical space. 〈h〉 may be a negative value.

%%wordsspace 〈length〉: sets the vertical space before the lyrics at end of the tune to 〈len-
gth〉.

A.5.5 Other Commands

Miscellaneous commands are grouped in this section.

%%abc2pscompat 〈logical〉 : if true, reverts to the old metod of dealing with notes in bass
and other clefs. Please see Section 2.2.1.

%%abcm2ps 〈char〉 : changes the pseudo-comment character; see Section @@@.

%%alignbars 〈int〉: aligns the bars of the next 〈int〉 lines of music. It only works on single-
voice tunes.

%%aligncomposer 〈int〉: specifies where to print the composer field. A negative value me-
ans “on the left”, 0 means “centre”, and a positive value means “on the right”.

%%autoclef 〈logical〉: if true, prints clefs and possibly clef changes when no clef is defined
in K: or V:.

%%beginps–%%endps: start/end of a PostScript sequence. TO BE EXPANDED.

%%beginsvg–%%endsvg: start/end of an SVG sequence. TO BE EXPANDED.

%%bgcolor: TO BE WRITTEN.

%%bstemdown 〈logical〉: if true, the stem of the note on the middle of the staff goes down-
wards. Otherwise, it goes upwards or downwards according to the previous note.

%%cancelkey 〈logical〉: TO BE WRITTEN.

%%clef: TO BE WRITTEN.

%%combinevoices 〈logical〉: if true, notes of same duration that belong to voices of the
same staff are combined producing chords. It does not apply when note pitches are in
unison, inverted or differ by a second.

%%contbarnb 〈logical〉: if true, the bar number of the second repeat(s) is reset to the num-
ber of the first repeat. If false, bars are sequentially numbered.

%%continueall 〈logical〉: ignores the line breaks in tune if true. It’s the equivalent of the
-c command line flag. DEPRECATED.

A.5. FORMATTING COMMANDS 111

%%custos: TO BE WRITTEN.

%%dateformat 〈string〉: defines the format of date and time. Default is %b %e, %Y %H:%M.
The fields specify, respectively: abbreviated month name (Jan–Dec), day of month (1–
31), year, hour (0–23), minute (0–59).

%%deco 〈string1〉 〈int1〉 〈string2〉 〈int2〉 〈int3〉 〈int4〉 〈string3〉: adds a new decoration. De-
tails are explained in Section 4.5.

%%decoration: TO BE WRITTEN.

%%dblrepbar: TO BE WRITTEN.

%%dynalign 〈logical〉: if true, horizontally aligns the dynamic marks.

%%dynamic: TO BE WRITTEN.

%%EPS 〈string3〉: includes an external EPS file in the score.

%%flatbeams 〈logical〉: if true, forces flat beams in bagpipe tunes (K:HP).

%%format 〈string〉: reads the format file specified as parameter.

%%gchordbox 〈logical〉: draws a box around accompaniment chords.

%%glyph: TO BE WRITTEN.

%%gstemdir: TO BE WRITTEN.

%%graceslurs 〈logical〉: draws slurs on grace notes.

%%hyphencont 〈logical〉: if true and if lyrics under the staff end with a hyphen, puts a
hyphen in the next line.

%%infoline 〈logical〉: if true, displays the rhythm and the origin on the same line, plus the
A: field.

%%infoname 〈string〉 〈string〉: defines the fields to be printed when %%writehistory is
true.

%%keywarn: TO BE WRITTEN.

%%linewarn: TO BE WRITTEN.

%%measurenb 〈int〉: draws the measure number every 〈int〉 bars.

%%measurebox 〈logical〉: draws a box around measure numbers.

%%measurefirst 〈int〉: starts numbering the measures from 〈int〉. OBSOLETE - see set-
barnb

%%micronewps: TO BE WRITTEN.

%%musiconly 〈logical〉: if true, doesn’t output the lyrics.

112 APPENDIX A. BITS & PIECES

%%oneperpage 〈logical〉: outputs one tune per page.

%%ornament: TO BE WRITTEN.

%%pango: TO BE WRITTEN.

%%partsbox 〈logical〉: draws a box around part names.

%%pdfmark: TO BE WRITTEN.

@@

%%postscript 〈string〉: a series of these commands lets the user add a new PostScript
routine, or change an existing one.

%%ps 〈string〉: same as %%postscript.

%%repbra 〈logical〉: if false, prevents displaying repeat brackets for the current voice.

%%repeat: TO BE WRITTEN.

%%score 〈string〉: like %%staves, but with a different behaviour regarding bars. See Sec-
tion 3.1.2 for details.

%%setbarnb 〈int〉: sets the number of the next measure.

%%setdefl 〈logical〉: if true, outputs some indications about the note/chord and/or decora-
tions for customization purposes. These indications are stored in the PostScript variable
“defl”.

%%shiftunison 〈logical〉: if true, shifts note heads that belong to different voices that are
in unison. It applies to dotted notes and notes shorter than minim.

%%splittune 〈logical〉: if true, splits tunes that do not fit in a single page.

%%squarebreve 〈logical〉: displays “brevis” notes in square format.

%%straightflags 〈logical〉: prints straight flags on stems in bagpipe tunes.

%%staff 〈int〉: prints the next symbols of the current voice on the 〈int〉-th staff.

%%stafflines: TO BE WRITTEN

%%staffnonote 〈logical〉: if false, staves with no notes are not printed. TO BE COM-
PLETED

%%staffscale: TO BE WRITTEN

%%staves 〈string〉: defines how staves are to be printed. See Section 3.1.2 for details. DEP-
RECATED.

%%stemdir: TO BE WRITTEN.

%%stemheight 〈float〉: sets the stem height to 〈float〉.

A.6. ABCMIDI COMMANDS 113

%%tablature : TO BE WRITTEN

%%timewarn 〈logical〉: if true, if a time signature occurs at the beginning of a music line, a
cautionary time signature is added at the end of the previous line.

%%titletrim 〈logical〉: if true, move the last word of a title to the head if it starts with a
capital letter and it’s preceded by a space and a comma.

%%transpose: TO BE WRITTEN.

%%tuplets 〈int1〉 〈int2〉 〈int3〉: defines how tuplets are to be drawn. See Section 4.5.5 for
details.

%%user: TO BE WRITTEN.

%%vocal 〈int〉: TO BE WRITTEN

%%vocalabove 〈logical〉: draws the vocals above the staff. OBSOLETE: see vocal

%%volume 〈length〉: TO BE WRITTEN

%%writefields: TO BE WRITTEN

%%writehistory 〈logical〉: outputs notes, history, etc.

A.6 abcMIDI commands

Some of these commands will only make sense to advanced users who have some experience
with MIDI files. In a few cases, explanations are taken from the abcguide.txt file included
in the abcMIDI archive.

%%MIDI barlines: turns off %%nobarlines.

%%MIDI bassprog 〈int〉: sets the MIDI instrument for the bass notes in accompaniment
chords to 〈int〉 (0–127).

%%MIDI bassvol 〈int〉: sets the velocity (i.e., volume) of the bass notes to 〈int〉 (0–127).

%%MIDI beat 〈int1〉 〈int2〉 〈int3〉 〈int4〉: controls the volumes of the notes in a measure.
The first note in a bar has volume 〈int1〉; other “strong” notes have volume 〈int2〉 and
all the rest have volume 〈int3〉. These values must be in the range 0–127. The parameter
〈int4〉 determines which notes are “strong”. If the time signature is x/y, then each note
is given a position number k = 0, 1, 2. . . x-1 within each bar. If k is a multiple of 〈int4〉,
then the note is “strong”.

%%MIDI beataccents: reverts to normally emphasised notes. See also %%MIDI nobeat-
accents.

%%MIDI beatmod 〈int〉: increments the velocities as defined by %%MIDI beat

%%MIDI beatstring 〈string〉: similar to %%MIDI beat, but indicated with an fmp string.

114 APPENDIX A. BITS & PIECES

%%MIDI c 〈int〉: specifies the MIDI pitch which corresponds to C . The default is 60. This
number should normally be a multiple of 12.

%%MIDI channel 〈int〉: selects the melody channel 〈int〉 (1–16).

%%MIDI chordattack 〈int〉: delays the start of chord notes by 〈int〉MIDI units.

%%MIDI chordname 〈string int1 int2 int3 int4 int5 int6〉: defines new chords or redefines
existing ones as was seen in Section 5.1.10.

%%MIDI chordprog 〈int〉: sets the MIDI instrument for accompaniment chords to 〈int〉
(0–127).

%%MIDI chordvol 〈int〉: sets the volume (velocity) of the chord notes to 〈int〉 (0–127).

%%MIDI control 〈bass/chord〉 〈int1 int2〉: generates a MIDI control event. If %%control
is followed by 〈bass〉 or 〈chord〉, the event apply to the bass or chord channel, otherwise
it will be applied to the melody channel. 〈int1〉 is the MIDI control number (0–127) and
〈int2〉 the value (0–127).

%%MIDI deltaloudness 〈int〉: by default, !crescendo! and !dimuendo! modify the
beat variables 〈vol1〉 〈vol2〉 〈vol3〉 15 volume units. This command allows the user to
change this default.

%%MIDI drone 〈int1 int2 int3 int4 int5〉: specifies a two-note drone accompaniment. 〈int1〉
is the drone MIDI instrument, 〈int2〉 the MIDI pitch 1, 〈int3〉 the MIDI pitch 2, 〈int4〉
the MIDI volume 1, 〈int5〉 the MIDI volume 2. Default values are 70 45 33 80 80.

%%MIDI droneoff: turns the drone accompaniment off.

%%MIDI droneon: turns the drone accompaniment on.

%%MIDI drumbars 〈int〉: specifies the number of bars over which a drum pattern string is
spread. Default is 1.

%%MIDI drum 〈str〉 〈int1 int2 int3 int4 int5 int6 int7 int8〉: generates a drum accompani-
ment pattern, as described in Section 5.1.12.

%%MIDI drummap 〈str〉 〈int〉: associates the note 〈str〉 (in ABC notation) to the a percus-
sion instrument, as listed in Section A.8.2.

%%MIDI drumoff turns drum accompaniment off.

%%MIDI drumon turns drum accompaniment on.

%%MIDI fermatafixed: expands a !fermata! by one unit length; that is, HC3 becomes
C4.

%%MIDI fermataproportional: doubles the length of a note preceded by !fermata!;
that is, HC3 becomes C6. abc2midi does this by default.

%%MIDI gchordbars 〈str〉: spreads the gchord string over 〈n〉 consecutive bars of equal
length. The gchord string should be evenly divisible by 〈n〉 or else the gchords will not
work properly.

A.6. ABCMIDI COMMANDS 115

%%MIDI gchord 〈str〉: sets up how guitar chords are generated; please see Section 5.1.7.

%%MIDI gchordoff: turns guitar chords off.

%%MIDI gchordon: turns guitar chords on.

%%MIDI grace 〈float〉: sets the fraction of the next note that grace notes will take up. 〈float〉
must be a fraction such as 1/6.

%%MIDI gracedivider 〈int〉: sets the grace note length as 1/〈int〉th of the following
note.

%%MIDI makechordchannels 〈int〉: this is a very complex command used in chords
containing microtones. Please consult the abcMIDI documentation.

%%MIDI nobarlines: normally, an accidental applied to a note also applies to other equal
notes until the next bar. By using this command, the accidental will apply to the follow-
ing note only.

%%MIDI nobeataccents: forces the 〈int2〉 volume (see %%MIDI beat) for each note in
a bar, regardless of their position.

%%MIDI noportamento: turns off the portamento controller on the current channel.

%%MIDI pitchbend 〈bass/chord〉 〈int1 int2〉: generates a pitchbend event on the current
channel, or on the bass or chord channel as specified. The value given by the following
two bytes indicates the pitch change. This option is not well documented.

%%MIDI portamento [bass] [chord] 〈int〉: turns on the portamento controller (glide ef-
fect) on the current channel (or to bass/chord channel) and set it to 〈int〉. 0 turns off the
effect.

%%MIDI program [int1] 〈int2〉: selects the program (instrument) 〈int2〉 (0–127) for chan-
nel 〈int1〉. If this is not specified, the instrument will apply to the current channel.

%%MIDI randomchordattack: delays the start of chord notes by a random number of
MIDI units.

%%MIDI ratio 〈int1 int2〉: sets the ratio of note lengths in broken rhythm. Normally c>c
will make the first note three times as long as the second; this ratio can be changed with
%%ratio 2 1.

%%MIDI rtranspose 〈int1〉: transposes relatively to a prior %%transpose command by
〈int1〉 semitones; the total transposition will be 〈int1 + int2〉 semitones.

%%MIDI snt 〈int〉 〈float〉: alters the standard MIDI pitch of a note 〈0–127〉; e.g. %%MIDI
snt 60 60.5 alters the pitch of C.

%%MIDI temperament 〈int1〉 〈int2〉: TO BE WRITTEN

%%MIDI temperamentlinear 〈float1 float2〉: changes the temperament of the scale. 〈fl-
oat1〉 specifies the size of an octave in cents of a semitone, or 1/1200 of an octave.
〈float2〉 specifies in the size of a fifth (normally 700 cents).

116 APPENDIX A. BITS & PIECES

%%MIDI temperamentnormal: restores normal temperament.

%%MIDI transpose 〈int1〉: transposes the output by 〈int1〉 semitones. 〈int1〉 may be pos-
itive or negative.

%%MIDI trim 〈int1〉 〈int2〉: controls the articulation of notes and chords by placing silent
gaps between the notes. The length of these gaps is determined by 〈int1〉/〈int2〉 and the
unit length is specified by the L: command. These gaps are produced by shortening the
notes by the same amount. If the note is already shorter than the specified gap, then the
gap is set to half the length of the note. It is recommended that 〈int1〉/〈int2〉 be a fraction
close to zero. Trimming is disabled inside slurs as indicated by parentheses. Trimming
is disabled by setting 〈int1〉 to 0.

A.7 PostScript Fonts

There are 35 standard PostScript fonts. They are all listed below, with the exception of ZapfD-
ingbats which is not supported by abcm2ps.

A.8. MIDI INSTRUMENTS 117

Bookman-Demi

Bookman-DemiItalic

Bookman-Light

Bookman-LightItalic

Courier

Courier-Oblique

Courier-Bold

Courier-BoldOblique

AvantGarde-Book

AvantGarde-BookOblique

AvantGarde-Demi

AvantGarde-DemiOblique

Helvetica

Helvetica-Oblique

Helvetica-Bold

Helvetica-BoldOblique

Helvetica-Narrow

Helvetica-Narrow-Oblique

Helvetica-Narrow-Bold

Helvetica-Narrow-BoldOblique

Palatino-Roman

Palatino-Italic

Palatino-Bold

Palatino-BoldItalic

NewCenturySchlbk-Roman

NewCenturySchlbk-Italic

NewCenturySchlbk-Bold

NewCenturySchlbk-BoldItalic

Times-Roman

Times-Italic

Times-Bold

Times-BoldItalic

Σψµβολ

ZapfChancery-MediumItalic

A.8 MIDI Instruments

A.8.1 Standard instruments

The following is a complete list of the General MIDI standard instruments, subdivided accord-
ing to instrument family. Remember, when using abc2midi the instrument number must be
decreased by 1.

118 APPENDIX A. BITS & PIECES

Piano Chromatic Percussion Organ
1. Acoustic Grand 9. Celesta 17. Drawbar Organ
2. Bright Acoustic 10. Glockenspiel 18. Percussive Organ
3. Electric Grand 11. Music Box 19. Rock Organ
4. Honky-Tonk 12. Vibraphone 20. Church Organ
5. Electric Piano 1 13. Marimba 21. Reed Organ
6. Electric Piano 2 14. Xylophone 22. Accordion
7. Harpsichord 15. Tubular Bells 23. Harmonica
8. Clavinet 16. Dulcimer 24. Tango Accordion

Guitar Bass Solo Strings
25. Nylon String Guitar 33. Acoustic Bass 41. Violin
26. Steel String Guitar 34. Electric Bass(finger) 42. Viola
27. Electric Jazz Guitar 35. Electric Bass(pick) 43. Cello
28. Electric Clean Guitar 36. Fretless Bass 44. Contrabass
29. Electric Muted Guitar 37. Slap Bass 1 45. Tremolo Strings
30. Overdriven Guitar 38. Slap Bass 2 46. Pizzicato Strings
31. Distortion Guitar 39. Synth Bass 1 47. Orchestral Strings
32. Guitar Harmonics 40. Synth Bass 2 48. Timpani

Ensemble Brass Reed
49. String Ensemble 1 57. Trumpet 65. Soprano Sax
50. String Ensemble 2 58. Trombone 66. Alto Sax
51. SynthStrings 1 59. Tuba 67. Tenor Sax
52. SynthStrings 2 60. Muted Trumpet 68. Baritone Sax
53. Choir Aahs 61. French Horn 69. Oboe
54. Voice Oohs 62. Brass Section 70. English Horn
55. Synth Voice 63. SynthBrass 1 71. Bassoon
56. Orchestra Hit 64. SynthBrass 2 72. Clarinet

Pipe Synth Lead Synth Pad
73. Piccolo 81. Lead 1 (square) 89. Pad 1 (new age)
74. Flute 82. Lead 2 (sawtooth) 90. Pad 2 (warm)
75. Recorder 83. Lead 3 (calliope) 91. Pad 3 (polysynth)
76. Pan Flute 84. Lead 4 (chiff) 92. Pad 4 (choir)
77. Blown Bottle 85. Lead 5 (charang) 93. Pad 5 (bowed)
78. Skakuhachi 86. Lead 6 (voice) 94. Pad 6 (metallic)
79. Whistle 87. Lead 7 (fifths) 95. Pad 7 (halo)
80. Ocarina 88. Lead 8 (bass+lead) 96. Pad 8 (sweep)

Synth Effects Ethnic Percussive
97. FX 1 (rain) 105. Sitar 113. Tinkle Bell
98. FX 2 (soundtrack) 106. Banjo 114. Agogo
99. FX 3 (crystal) 107. Shamisen 115. Steel Drums
100. FX 4 (atmosphere) 108. Koto 116. Woodblock
101. FX 5 (brightness) 109. Kalimba 117. Taiko Drum
102. FX 6 (goblins) 110. Bagpipe 118. Melodic Tom

A.8. MIDI INSTRUMENTS 119

103. FX 7 (echoes) 111. Fiddle 119. Synth Drum
104. FX 8 (sci-fi) 112. Shanai 120. Reverse Cymbal

Sounds Effects
121. Guitar Fret Noise
122. Breath Noise
123. Seashore
124. Bird Tweet
125. Telephone Ring
126. Helicopter
127. Applause
128. Gunshot

A.8.2 Percussion Instruments

These instruments can be used with %%MIDI drum, or using the corresponding note in the
MIDI channel 10.

35. B,,, Acoustic Bass
Drum

36. C,, Bass Drum 1 37. ˆC,, Side Stick

38. D,, Acoustic Snare 39. ˆD,, Hand Clap 40. E,, Electric Snare
41. F,, Low Floor Tom 42. ˆF,, Closed Hi Hat 43. G,, High Floor Tom
44. ˆG,, Pedal Hi-Hat 45. A,, Low Tom 46. ˆA,, Open Hi-Hat
47. B,, Low-Mid Tom 48. C, Hi Mid Tom 49. ˆC, Crash Cymbal 1
50. D, High Tom 51. ˆD, Ride Cymbal 1 52. E, Chinese Cymbal
53. F, Ride Bell 54. ˆF, Tambourine 55. G, Splash Cymbal
56. ˆG, Cowbell 57. A, Crash Cymbal 2 58. ˆA, Vibraslap
59. B, Ride Cymbal 2 60. C Hi Bongo 61. ˆC Low Bongo
62. D Mute Hi Conga 63. ˆD Open Hi Conga 64. E Low Conga
65. F High Timbale 66. ˆF Low Timbale 67. G High Agogo
68. ˆG Low Agogo 69. A Cabasa 70. ˆA Maracas
71. B Short Whistle 72. c Long Whistle 73. ˆc Short Guiro
74. d Long Guiro 75. ˆd Claves 76. e Hi Wood Block
77. f Low Wood Block 78. ˆf Mute Cuica 79. g Open Cuica
80. ˆg Mute Triangle 81. a Open Triangle

	About This Book
	Music on the Computer with Abc 2
	Introduction
	Requirements
	Software
	Why Abc?

	Getting Started
	Installing the Programs
	Abc in a Nutshell
	Our First Score

	Melody
	Notes and Symbols
	Pitch: A-G a-g ,'
	Note Length: L:
	Rests and Spacing: z Z x y
	Accidentals: ^_ =
	Dotted Notes: < >
	Ties, Slurs, Staccato: - () .
	Tuplets: (n
	Chords: []
	Lyrics: W: w:
	Foreign Characters
	Typing Accented Letters: Beware!

	Grace Notes: ~ {}
	Forcing Line Breaks: !
	Avoiding Line Breaks: \
	Inline Fields

	Music Properties
	Key signatures and Clefs: K:
	Key Signatures
	All Seven Clefs
	Bass and Alto Clefs Compatibility Issues

	Metre: M:
	Bars and Repeats: | / : []
	Title, Composer, Tempo: T: C: Q:
	Parts: P:
	Accompaniment Chords: ""
	Text Annotations: "_<>@"
	Figured Bass

	Ornaments: !symbol!
	Redefinable Symbols: U:
	Information Fields

	Harmony
	Polyphony in Abc
	Voices and Systems: V:
	Positioning Voices: %%staves and %%score
	Voice Splitting: &
	Change of System

	Page Layout
	Formatting Parameters
	Changing Parameters
	The Grand Staff
	Using Fonts and Text
	Voice Scale
	Staff Breaks
	Multi-column Output
	Customising Titles
	Headers and Footers
	Inserting Graphics Files

	Format files
	Numbering Measures and Pages
	Measure Control

	Saving Space
	Advanced Customisation (Experts Only!)
	New PostScript Routines
	Accompaniment Chords in Italian Notation
	Defining New Symbols
	Adding Fonts
	Customising Tuplets
	Tin Whistle Fingerings

	Playing
	MIDI Conversion
	A Software MIDI Player: TiMidity++
	Our First Midi
	Example: How To Make a Ringtone
	Supported Ornaments
	%%MIDI Commands
	Voices and Instruments
	Accompaniment Chords
	Customising Beats
	Arpeggios
	New Accompaniment Chords
	Broken Rhythm
	Drum Patterns
	Percussion Instruments
	Portamento
	Drone
	midi2abc
	Global Settings

	Differences and Incompatibilities

	Converting
	The abcpp Preprocessor
	Basic Usage
	Advanced Usage

	Using the abcm2ps Command
	abc2abc

	Other Possibilities
	Inserting Music in Other Programs
	Inserting Music in LaTeX
	Using abc.sty

	Converting Graphics to eps
	Parts Extraction
	Limitations of abcm2ps
	Final Comments
	Please, Make a Donation…
	In Loving Memory of Annarosa Del Piero, 1930–2000

	Bits & Pieces
	Web Links
	Abc Fields
	Glossary
	Character Sets
	Formatting Commands
	Page Format
	Text
	Fonts
	Spacing
	Other Commands

	abcMIDI commands
	PostScript Fonts
	MIDI Instruments
	Standard instruments
	Percussion Instruments

